arrow_down arrow_left arrow_right ca compl cross fav like login meta_cat meta_coms meta_date meta_mail meta_pages meta_reply meta_user meta_views next prev search sort speedbar tags fb gp mail od tw vk ya

Репозитарій

ЛНМУ імені Данила Галицького

Development of cancer drug-resistance is still an ongoing problem in the modern anticancer treatment. Therefore, there is a need to search for a new active substance, which may become a potential anticancer agent. 4-Thiazolidinones are well-described substances with cytotoxicity against cancer cells in vitro. Therefore, the aim of this study was to evaluate the effect of two 4-thiazolidinone-based derivatives (Les-2769 and Les-3266) on the PPARγ-dependent cytotoxicity in normal human skin fibroblasts (BJ) and squamous cell carcinoma (SCC-15) in vitro. The data obtained showed a cytotoxic effect of Les-2769 and Les-3266 used in micromolar concentrations on SCC-15 and BJ cells, manifesting by a decrease in the metabolic activity, an increase in the release of lactate dehydrogenase, and caspase-3 activity. The co-treatment of the cells with Les-3266 and an antagonist (GW9662) or an agonist (rosiglitazone) of the PPARγ receptor induced changes in the above-mentioned parameters in the BJ and SCC-15 cells, compared to the Les-3266 alone exposure; this was not found in the Les-2769-treated cells. The further analysis of the compounds indicated changes in the expression of the PPARγ, KI67, and NF-κB genes. Moreover, the tested compounds caused an increase in the level of PPARγ mRNA expression in a similar way to rosiglitazone in SCC-15, which may indicate the affinity of the compounds for PPARγ. Molecular docking is consistent with experimental in vitro data about the potential agonistic activity of Les-2769 and Les-3266 towards PPARγ receptors. Summarizing, the anticancer effect of both compounds was observed in the SCC-15 cells in vitro; moreover, the mechanism of action of Les-3266 in cells is mediated probably by interaction with the PPARγ receptor pathway, which needs in-depth study. 

New 4-aryl-3-(morpholin-4-yl)-2-arylimino-2,3-dihydrothiazole derivatives 1.1-1.16 were obtained using the Hantzsch reaction by condensation of N-(morpholin-4-yl)-N'-arylthioureas with the corresponding α bromoacetophenones in alcohols. Synthesized hydrobromides 1.1-1.8 were formed as crystalline precipitates during the boiling of the reaction mixture. Bases 1.9-1.16 were obtained by neutralizing the corresponding hydrobromides with NH4OH solution. It has been proposed a possible mechanism of the reaction that is based on the study of the structure of the synthesized compounds. The structures of the synthesized compounds were confirmed by 1H NMR spectroscopy with its special techniques (NOESY and ROESY experiments). It has been shown the formation of the isomer 4-(4'-chlorophenyl)-3-(morpholin-4-yl)-2-(4'-chlorophenylamino)-2.3-dihydrothiazole on the basis of compound 1.14. Pharmacological screening of synthesized derivatives of 4-aryl-2-arylimino-2,3-dihydrothiazole compounds revealed the analgesic effect in the model of visceral pain caused by the introduction of acetic acid to white mice. The anti-inflammatory effect of the synthesized compounds was evaluated in vivo by reducing limb edema in rats with carrageenan-induced inflammation. Thus, the synthesized compounds have analgesic and anti-inflammatory activity.

Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specifc architecture with specifc bacteriological and photocatalytic properties. Femtosecond lasergenerated surface structures, such as laserinduced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation efect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to infuence the adhesion of the bacterial strain on diferent surfaces. On the
laserstructurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Keywords Micro/nano-structured surface, Reduced bacterial adhesion, Ultra-short pulsed laser treatment, Photocatalytic activity

: Hydroxyapatite (HAP) is the most common calcium phosphate ceramic that is used in biomedical applications, e.g., as an inorganic component of bone scaffolds. Nevertheless, fluorapatite (FAP) has gained great attention in the area of bone tissue engineering in recent times. The aim of this study was a comprehensive comparative evaluation of the biomedical potential of fabricated HAP- and FAP-based bone scaffolds, to assess which bioceramic is better for regenerative medicine applications. It was demonstrated that both biomaterials had a macroporous microstructure, with interconnected porosity, and were prone to slow and gradual degradation in a physiological environment and in acidified conditions mimicking the osteoclast-mediated bone resorption process.
Surprisingly, FAP-based biomaterial revealed a significantly higher degree of biodegradation than biomaterial containing HAP, which indicated its higher bioabsorbability. Importantly, the biomaterials showed a similar level of biocompatibility and osteoconductivity regardless of the bioceramic type. Both scaffolds had the ability to induce apatite formation on their surfaces, proving their bioactive property, that is crucial for good implant osseointegration. In turn, performed biological experiments showed that tested bone scaffolds were non-toxic and their surfaces promoted cell proliferation and osteogenic differentiation. Moreover, the biomaterials did not exert a stimulatory effect on immune cells, since they did not generate excessive amounts of reactive oxygen species
(ROS) and reactive nitrogen species (RNS), indicating a low risk of inflammatory response after implantation. In conclusion, based on the obtained results, both FAP- and HAP-based scaffolds have an appropriate microstructure and high biocompatibility, being promising biomaterials for bone regeneration applications. However, FAP-based biomaterial has higher bioabsorbability than the HAP-based scaffold, which is a very important property from the clinical point of view, because it enables a progressive replacement of the bone scaffold with newly formed bone tissue.
Keywords: calcium phosphates; scaffold; biomaterial; compressive strength; bioactivity; biodegradation;
biocompatibility; osteoblast; osteogenic differentiation; cytotoxicity

Алергічний альвеоліт (АА) – це імунологічно індуковане запалення легеневої паренхіми. Це захворювання поширене серед осіб, чия праця пов’язана з сільським господарством. У дощовий сезон алергічним альвеолітом хворіють до 8 % фермерів Англії і близько 4 % у США.

Популярні наукові праці, статті та інше