Multicomponent reactions effectively contribute to modern organic and medicinal chemistry. 4-Thiazolidinone core and cyclopropyl moiety are important structural motifs for design of potential biologically active molecules. In the present paper, the convenient step-economy and cost-effective synthesis of 2-(cyclopropylamino)-5-(4-methoxybenzylidene)thiazol-4(5H)-one (2) is described based on the application of the MCR methodology. The proposed approach includes direct one-pot interaction of 2-thioxothiazolidin-4-one (rhodanine), 4-methoxybenzaldehyde with cyclopropylamine which was used in 10% excess compare to other reagents. The structure of synthesized compound 2 was confirmed using 1H, 13C, 2D NMR, LC-MS, IR and UV spectra. The presence of prototropic amino/imino tautomerism for synthesized compound 2 was observed based on spectral analysis data. Screening of antimicrobial activity against 12 strains of Gram-positive and Gram-negative bacteria, as well as yeasts, was performed for synthesized derivative 2. © 2022 by the authors.

Author keywords

4-thiazolidinones; antimicrobial activity; cyclopropylamine; multicomponent reactions; rhodanine

UDC 547.551.552

New S-(ω-fluoralkyl) 4-amino- and 4-acetamidobenzenesulfonothioates were synthesized by the reaction of sodium salts of the substituted thiosulfonic acids and correspondingω-fluoralkylbromides. The study of their antimicrobial activity against thirteen referenceand clinical bacterial and fungal strains using agar diffusion method was conducted. All compounds showed significant antimicrobial activity, two of them showed higher activity against Candida albicans than known antifungal compound of sulfonothioate class, S-ethyl ester of 4-aminobenzenethiosulfonic acid.

A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were established by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI protocols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on HCT116wt, and it may be an interesting feature of the mechanism action.