Aim. Study of the synthesis, analysis of ADME - Tox parameters and anti-cancer activity of a series of N-(5-R-benzylthiazole-2-yl)-2-morpholin-4-yl-2-thioxoacetamides.
Methods. Organic synthesis, 1H NMR spectroscopy, analytical method, in silico ADME-Tox analysis and in vitro cytotoxicity assay.
Results. The series of new N-(5-R-benzylthiazole-2-yl)-2-morpholin-4-yl-2-thioxoacetamides was synthesized according to a convenient synthetic method. Their structures were confirmed by 1H NMR spectroscopy and microanalyses. Using the internet resources of SwissADME and pkCSM-pharmacokinetics, the ADME - Tox profiles of the synthesized compounds were calculated. It was determined that the substances were within the optimal limits of  bioavailability. All compounds meet the criteria of drug similarity according to the rules of Lipinski, Weber, Egan and Mugge. It is also determined that low toxicity is predicted for these substances. The synthesized compounds were tested in vitro for their antitumor activity according to the Developmental Therapeutic Program of the National Cancer Institute (NCI) (www.dtp.nci.nih.gov) against 60 cancer lines in the concentration of 10 μM. Human tumor
cell lines from nine different cancer types were used: leukemia, melanoma, lung, colon, CNS, ovarian, kidney, prostate an d breast cancer. Screening results showed that, in most cases, these compounds are of low activity. An exception is the renal cancer line UO-31, which was moderately sensitive to all synthesized compounds.
Conclusions. A series of 2-aminothiazole hybrids containing morpholine moiety was synthesized and studied in silico ADME-Tox profiles. The ADME-Tox profiles indicated good oral bioavailability and low toxicity. Synthesized compounds were tested in vitro for their anti-cancer activity. They showed moderate antiproliferative activity.

A crucial direction in the progress of modern medical chemistry is the development and improvement of theoretical investigation methods of drugs mechanisms of action, predicting their activity, and virtual design of new drugs. This review describes the history of targeted search for biologically active compounds, current in silico approaches and tools used in the rational design of potential drugs, in particular the main computational strategies used in modern drug design are presented and outlines the main methodologies for implementing these strategies.