In the present work, we presented an efficient synthesis and anticancer activity evaluation of some new 3-R-6-(5-arylfuran-2-yl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. We have shown that the proposed synthetic protocols provided the possibility to design triazolothiadiazoles diversity with a considerable chemical novelty. The structures of target substances were confirmed by using 1H NMR spectroscopy, mass spectrometry and elemental analysis. The synthesized compounds were selected by the National Cancer Institute Developmental Therapeutic Program for the in vitro cell line screening. Among all the substances tested, three compounds exhibited significant cytotoxic activity.
A series of some new pyrazole-substituted 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines was synthesized in this study. The structures of target substances were confirmed by using 1H and 13С NMR spectroscopy, mass spectrometry and elemental analysis. The synthesized compounds have been evaluated for antimicrobial activity against five bacterial strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus) and two fungal strains (Candida albicans and Cryptococcus neoformans). The antimicrobial screening studies of synthesized substances established that 2 of 12 compounds show pronounced antibacterial activity against the strain Staphylococcus aureus.
The 18 new thiazolo[4,5-b]pyridin-2-one derivatives have been synthesized using alkylation, cyanethylation, hydrolysis, and acylation reactions. The structures of the obtained compounds have been confirmed by 1H NMR spectroscopy, mass spectrometry, and elemental analysis. The study of the in vivo anti-inflammatory activity of the synthesized substances was assessed by using the functional model of carrageenan-induced rat paw edema. The present results of anti-inflammatory activity have shown that the synthesized compounds demonstrated considerable anti-inflammatory effects. Some of them approach or exceed the comparative drug Ibuprofen in terms of activity.