618.7-06:616.16-005.6

Тромботична мікроангіопатія (ТМА) - це гетерогенна група захворювань, які за наявності пошкодження ендотелію можуть призводити до тромбозу малих та мікросудин, вторинного споживання тромбоцитів, механічного гемолізу та ішемічного ураження кінцевих органів. Залежно від залучених органів можуть виникати ниркова недостатність, неврологічні симптоми, кардіальна патологія, дихальна недостатність,
порушення зору, панкреатит, ішемія кишківника і (рідше) зміни шкіри .
Така характерна тріада симптомів, як гостра ниркова недостатність (ГНН), мікроангіопатичний гемоліз і тромбоцитопенія, може також супроводжувати деякі специфічні для вагітності стани (зокрема, тяжку прееклампсію/HELLP-синдром (гемоліз, підвищення рівня печінкових ферментів та низька кількість тромбоцитів) , гостру жирову дистрофію печінки вагітних (ГЖДП), а також захворювання, не пов`язані з
вагітністю, але спровоковані нею (катастрофічний антифосфоліпідний синдром (кАФС)
[9], загострення системного червоного вовчаку (СЧВ)). Постає питання ранньої діагностики різних типів ТМА під час вагітності, їх диференційної діагностики з іншими ускладненнями перебігу гестаційного процесу та
проведення цілеспрямованої патогенетичної терапії.

Оціненно ефективність використання конфлікт-вільних реплікаційних структур даних CRDT (англ. Conflict-free Replicated Data Types), для забезпечення узгодженості та цілісності даних у стистемах моніторингу Інтернету речей (ІоТ).

УДК 614.2. : 658.562

Дослідженовикористання медичних інформаційних систем в медичних закладах. Основні акценти зосереджено на процесах, що забезпечують автоматизацію різних напрямків діяльності роботи лікарів різного профілю.Розглянутоможливість впровадження ризик-підходу всистеми менеджменту якості у медичнихустановах, визначено вимоги до системи управління ризиками, яка відповідає характеру та масштабаммедичних закладів різного профілю.Використання медичних інформаційних систем повязане з різними внутрішніми та зовнішніми загрозами, які можуть призвести до ризиків для пацієнтів. Обєктом дослідження є медичні інформаційні системи та їхняадаптація до робочих процесів у закладах охорони здоровя.Предметом дослідження стали результати опитування щодо використання лікарями окремого модул ямедичної інформаційні системи, а саме електронної медичної карти пацієнта на різних рівнях надання медичної послуги.У процесі цього дослідження, за допомогою анонімного анкетуванняпроаналізовано ступінь пристосованості медичної інформаційної системи до роботи лікаря, визначено рівень адаптованості медичної інформаційної системи до потреб медичних працівників та аналіз можливих ризиків в процесах надання медичної послуги, а саме, наетапі роботи з електронною медичної карткою. Аналіз недоліків дозволяєпереглянути робочі процеси медичного закладу, оцінити вплив потенційних ризиків на результати роботи лікарів, змінити процеси, щоб зменшити або усунути виявлені ризики в процесі роботиз медичними інформаційними системами.Актуальною проблемою є розроблення коригувальних і запобіжних заходів для зниження і мінімізації ризиків, а впровадження системи управління ризиками в медичних закладах в рамках системи менеджменту якості, сприятиме підвищенню якості надання медичних послуг та збільшенню задоволеності пацієнтів.Обґрунтовано підходи до ідентифікації ризиків які виникають в процесі роботи з медичними інформаційними системами згідно з вимогами міжнародних стандартів.

The article presents the design and technological features of creating color labels-sensors of microelectromechanical systems intended for monitoring physicochemical parameters under the conditions of high- level electromagnetic interference. The software module of the hardware and software complex for the visualization of spectral intensity by converting it into an RGB colour model has been created. The algorithm for carrying out the procedure for calculating the color rendering index is shown and the main parameters of temperature colors in a wide range of visible radiation waves are determined 

The work proposes the use of a unique method of creating passive, multifunctional, non-contact pressure-temperature sensors. The basis of this method is a combination of inorganic semiconductors and high-molecular organic cholesteric crystals. According to their morphology, such crystals represent a spiral structure that is sensitive to changes in external physical factors, such as temperatures, due to changes in the periodicity of the structure, which leads to Bragg diffraction scattering of light on it. The consequence of such influence is the coloring of the cholesteric, which can be identified by external spectrosensitive devices on a non-contact basis. On the other hand, the use of inorganic semiconductors involves the production of a micro-profiled base with a thin silicon membrane that is sensitive to external pressure. The thickness of the membrane determines the operating conditions of the sensor depending on the range of applied pressure from 0.3 bar and above. A hardware and software complex was developed for continuous monitoring of changes in the color of passive pressure-temperature sensors, tracking the spectral distribution of the light intensity of the color of the liquid crystal depending on the operating conditions on a non-contact basis with an external spectrometer. The basis of such a system is a software module created on the basis of the MVVM (Model–View–View Model) architecture template. A feature of the software module is the use of the .NET and WPF frameworks, which natively support this architectural pattern for .NET Windows platforms and are supported by all popular versions of operating systems. The SQlite database, which is a relational database management system, is used to store data in the software application. The OmniDriver library was used in the system to operate and configure the spectrometer. The software module has two modes of operation with spectrometers. The first mode is characterized by the reading of a single spectrum, while the second mode is characterized by periodic reading and processing of the intensity spectral distribution in real time with a given period. When using the second mode, the software module allows you to dynamically change the periods and parameters of changing the color parameters of the light over time. The main algorithm of the software module is the transformation of the spectral intensity distribution normalized in the CIE XYZ color model, which is the basis for all further calculations, into the RGB model.