UDC 616–093+547.789
Aim. Synthesis, structure determination, in vivo study of anti-inflammatory (anti-exudative) and ulcerogenic activity, estimation of an impact of novel pyrazolin-5-one bearing thiazolidin4-ones on liver function. Methods. Organic synthesis: multicomponent reactions (MCRs), [2+3]-cycloaddition reactions. Spectral methods: IR, LC-MS, 1H NMR. Biological methods: study of anti-cancer activity (NCI NIH, USA) protocol for 3-cell line panel); carrageenin-induced inflammatory paw edema model of white rats, biochemical laboratory tests (ALT, AST, ALP, γ-GGT levels determination); evaluation of ulcerogenic action. Results. The series of novel C-5 and N-3 substituted 2-[(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) amino/imino]thiazolidin-4-ones had been synthesized using MCR and [2+3]-cycloaddition reactions as potential biologically active compounds. The results of screening anti-exudative activity revealed that the tested derivatives possess promising anti-inflammatory effect. The SARs were formed and possible mechanisms of their action were discussed. Conclusions. The results presented in paper suggest that the design and synthesis of new pyrazolin-5-on/ thiazolidin-4-one hybrids as potential molecules are an attractive area for the search for novel agents with promising pharmacological properties.
K e y w o r d s: antipyrine, pyrazolin-5-one, thiazolidin-4-one, hybrids, multicomponent reactions, tautomers/rotamers; anticancer/anti-inflammatory activity