Introduction

Many clinical studies have proved the effectiveness of probiotics in metabolic disorders associated with insulin resistance. However, the impact of probiotic therapy on pancreatic β-cell function is ambiguous. The influence of probiotic supplementation vs. placebo on β-cell function in people with type 2 diabetes (T2D) was assessed in a double-blind, single-center, randomized, placebo-controlled trial (RCT).

Methods

Sixty-eight patients with T2D were selected for participation in the RCT. Patients were randomly allocated to consumption of live multistrain probiotics or a placebo for 8 weeks, administered as a sachet formulation in double-blind treatment. The primary main outcome was the assessment of β-cell function as change in C-peptide and HOMA-β (homeostasis model assessment-estimated β-cell function), which was calculated using the HOMA2 calculator (Diabetes Trials Unit, University of Oxford). Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables, and cytokines levels. Analysis of covariance was used to assess the difference between groups.

Results

Supplementation with live multiprobiotic was associated with slight significant improvement of β-cell function (HOMA-β increased from 32.48 ± 13.12 to 45.71 ± 25.18; p = 0.003) and reduction of fasting glucose level (13.03 ± 3.46 vs 10.66 ± 2.63 mmol/L and 234.63 ± 62.36 vs 192.07 ± 47.46 mg/dL; p < 0.001) and HbA1c (8.86 ± 1.28 vs 8.48 ± 1.22; p = 0.043) as compared to placebo. Probiotic therapy significantly affects chronic systemic inflammation in people with T2D by reducing pro-inflammatory cytokine levels.

Conclusions

Probiotic therapies modestly improved β-cell function in patients with T2D. Modulating the gut microbiota represents a new diabetes treatment and should be tested in more extensive studies.

Trial Registration

NCT05765292.

Abstract: Our study aimed to evaluate the effect of whole body vibration (WBV) treatment as an non-pharmacological method of treatment for early osteopenia in ovariectomized female rats. In total, 48 female Wistar rats were assigned to two groups: sham-operated control (SHAM, n = 12) and ovariectomized (n = 36). Four weeks after ovariectomy, the animals were divided into three experimental groups (n = 12 each): ovariectomized (OVX), ovariectomized subjected to whole body vibration with acceleration level of 0.3 g (OVX + WBV), or ovariectomized subjected to i.m. injection of Zoledronic acid at a dose of 0.025 mg/kg (OVX + ZOL). After the 8th and 16th week of treatment n = 6 rats from each group were euthanized and isolated femora were subjected to histological examination of trabecular bone and analysis of the expression of collagen 1 (Col1), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) involved in bone turnover. The obtained results indicated that widespread vibration therapy can provide negative outcomes such as deterioration of trabecular bone histomorphometry.