arrow_down arrow_left arrow_right ca compl cross fav like login meta_cat meta_coms meta_date meta_mail meta_pages meta_reply meta_user meta_views next prev search sort speedbar tags fb gp mail od tw vk ya

Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specifc architecture with specifc bacteriological and photocatalytic properties. Femtosecond lasergenerated surface structures, such as laserinduced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation efect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to infuence the adhesion of the bacterial strain on diferent surfaces. On the
laserstructurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Keywords Micro/nano-structured surface, Reduced bacterial adhesion, Ultra-short pulsed laser treatment, Photocatalytic activity

 Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms’ exposure, and toxicity. The presented studies include the degradation of 4,40 -isopropylidenebis(2,6-dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and µ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on µ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on µ-Fe3O4 (reaction system 1). Theexamined crustaceans can be used as a sensitive test for acute toxicity evaluation.