Abstract

Background: Propolis and its major phenolic compound, caffeic acid phenethyl ester (CAPE), have garnered considerable scientific interest due to their anti- inflammatory properties and potential therapeutic applications.

Objectives: This narrative review explores the potential utility of CAPE in cancer treatment.

Methods: We comprehensively reviewed relevant studies from scientific databases (PubMed and Web of Science) from 2000 to 2022. Our search focused on keywords such as cancer, natural drugs, caffeic acid phenethyl ester, CAPE, cancer cell lines, antitumor effects, and propolis.

Results: CAPE exhibits diverse biological benefits, including antimicrobial, antioxidant, antiviral, anti-inflammatory, cytotoxic, and potentially anti-carcinogenic properties. Numerous studies have demonstrated its wide-ranging antitumor effects on various cancer cell lines, including growth inhibition, apoptosis induction, tumor invasiveness prevention, malignancy suppression, and anti-angiogenic activity.

Conclusion: Following comprehensive preclinical toxicity assessments, further evaluation of CAPE's efficacy and safety through clinical trials is highly recommended to elucidate its potential health benefits in diverse forms of human cancer.

The average worldwide human life expectancy is 70 years, with a significantly higher value in Western societies. Many modern diseases are not associated with premature mortality but with a decreased quality of life in aged patients and an excessive accumulation of various toxic compounds in the human body during life. Today, scientists are especially interested in finding compounds that can help increase a healthy lifespan by detoxifying the body. Phytotherapy with specific approaches is used in alternative medicine to remove toxins from the body. Worldwide, research is conducted to identify medicinal plant-derived molecules that, with few or no side effects, may protect the liver and other organs. This review provides updated information about the detoxification process, the traditional and modern use of the most effective medicinal plants, their active metabolites as detoxifying agents, and the mechanisms and pathways involved in the detoxification process. Among medicinal plants with substantial detoxifying properties, a major part belongs to the Asteraceae family (Silybum marianum, Cynara scolymus, Arctium lappa, Helichrysum species, Inula helenium, and Taraxacum officinale). The most widely used hepatoprotective phytocomponent is silymarin, a standardized extract from the Silybum marianum seeds containing a mixture of flavonolignans. Many polysaccharides, polyphenols, and terpenoids have a detoxifying effect. Overall, scientific data on medicinal plants used in phytotherapeutic practice worldwide provides an understanding and awareness of their efficacy in detoxification.

The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.