Монографія охоплює важливі аспекти досліджень потенційно протипухлинної дії сульфурвмісних гетероци-
клів на молекулярному, субклітинному, клітинному та органному рівнях організації. Встановлено, що новосинте-
зовані похідні 2-аміно-5-бензилтіазолу є ефективним інгібіторами клітинного циклу у фазі G2/M ракових клітин
лінії U251 і T98G гліобластоми людини та лінії MDA231 аденокарциноми молочної залози людини. Виявлено
сполуку цитотоксичну щодо медикаментозно стійкої сублінії клітин HL-60/ADR гострого промієлоцитарного
лейкозу людини. Поряд із тим похідні тіазолу були малотоксичні щодо псевдонормальних ембріональних клітин
нирки людини та клітин шкіри – кератиноцитів. Похідні 2-аміно-5-бензилтіазолу також індукують мітохондрі-
альний механізм апоптозу в гліомних клітинах ліній U251 і T98G та лейкозних клітинах ліній HL-60 і K562. Дія
досліджуваних похідних тіазолу важливим чином скерована також на активність ферментів антиоксидантної
системи клітин лімфоми. Ці речовини призводять до підвищення активності супероксиддисмутази у клітинах
лімфоми та знижують активність каталази і глутатіонпероксидази, що може зумовлювати токсичне накопичення
Н2О2 у пухлинних клітинах і спричиняти розриви ДНК, апоптоз і зниження інтенсивності гліколізу. Ці ключові
ферменти антиоксидантного захисту, можуть бути мішенями для протипухлинних препаратів, оскільки зміни
ферментативної активності впливатимуть на рівень вмісту первинних і вторинних продуктів ПОЛ, які можуть
бути токсичними для ракових клітин. З іншого боку похідні тіазолу в концентраціях рівновеликих значенню IC50
для пухлинних клітин і навіть у десять разів вищих не проявляли цитотоксичної та генотоксичної активності
в ана-телофазному тесті. Похідні на основі 4-тіазолідінону мають антинеопластичну активність in vitro та проти-
пухлинну активність in vivo. Окрім протипухлинної активності, похідні 4-тіазолідинону здатні знижувати рівень
вільних радикалів, який є важливим для інактивації шкідливих вільнорадикальних метаболітів у біологічних
системах. Оскільки досліджувані похідні тіазолу, виявляють високу селективну цитотоксичність стосовно пух-
линних клітин і суттєво менше впливають на неракові клітини, ці речовини є перспективними як протипухлинні
препарати, і надалі можуть бути використані для доклінічних досліджень.
Для біологів, хіміків і медиків, яких цікавлять проблеми онкології та пошук нових протипухлинних пре-
паратів, а також для студентів і аспірантів медико-біологічного профілю.
My interest in specific nanomaterials and nanobiotechnologies for biology and medicine started in 2005, when a couple of my colleagues who are organic and physical chemists sent me a proposal to investigate the biological activities of their products in order to evaluate the potential biomedical applications of the synthe-sized products. The role of my department at the Institute of Cell Biology, NAS of Ukraine, was to study the possibility of using new products, organic polymers and C60-fullerene nanoparticles, as platforms for drug and gene delivery. The need for such platforms exists because of the inaction of many medicines and their adverse effects in the treated organism. In addition, the physicochemical properties of many drugs, for example, with their poor water solubility, do not allow for a convenient application of these drugs. As a result of the realization of joint research projects with my colleagues working in Eastern and Central European countries, several nanoplatforms were developed for drug and gene delivery. Thus, there was a need
for the analysis and summarization of our experience in the molecular design, chemical synthesis, and biomedical application of novel nanomaterials in order to pass that experience to other scientists who work in this rapidly developing field of materials science. Most co-authors of this book participated in the TechConnect World Innovation Conference in Washington, DC (USA), in 2017. Their oral and poster presentations were visited by Merry Stuber, Senior Editor with Springer Nature Publishers. She asked Dr. Sandor Vari, Director of International Research and Innovation in Medicine Program (Cedars-Sinai Medical Center, Los Angeles, CA, USA) and RECOOP Association (https://www.cedars-sinai.org/research/administration/recoop.html), who managed our participation at the TechConnect World Innovation Conference, if he would prepare a book devoted to our results in the development of novel nanomaterials and nanobiotechnologies for biomedical use. This initiative was interrupted by COVID-19-related problems, but finally, we can present our
book to readers. The logistics of composing the presented materials is based on offering to read-ers a unique manual for their strategy for developing their own nanomaterials for biomedical applications, starting from their molecular design and synthesis, and moving to necessary steps of their physical-chemical and toxicological characteris-tics (biodegradability, biocompatibility, controlled delivery and clearance in the organism, as well as potential bio-risks for the environment). Both the organic (novel surface-active comb-like PEG-containing polymers) and mineral (novel water-soluble C60-fullerene-based nanoplatforms and magnetic iron oxide-based nano- and micro-particles for theranostics) materials used in biomedical applica-tions are described by the leading specialists in the corresponding fields. The nano-toxicology-related aspects of these and other biomedical materials are described
both in general, including genotoxicity and environmental toxicity, and specifically, hepato-, cardio-, nephro-, and immune-toxicities. Environmental aspects of the application of various nanomaterials have been characterized for freshwater and marine organisms, as well as for the multipollutant strategy of assessment of the environmental quality and health risks caused by air nano-pollutants. Bioimaging of nanomaterials is a central element for monitoring their biological action, and this aspect is described in the book as characterization of novel polymeric nanocarriers for gene delivery, which is a crucial step in gene therapy that is considered to be the future of medicine. The co-authors of all chapters of this book are thankful to the people who initi-
ated its writing, as well as to numerous members of the research teams who assisted in the experiments aimed at the development of novel nanomaterials and nanobio-technologies for biomedical applications.