Fungi of the genus Lactarius Pers. before the maturation of spores are not damaged by microorganisms, insects, mollusks, and animals. Such resistance correlates with the period when the basidiomes of these fungi are filled with milky juice, which contains substances of various chemical nature that provide their protection. </jats:sec> <jats:sec> Objective: The aim of our work is to present the results of our recent and previously published studies on the identification and toxicological characteristics of substances available in the milky juice of fungi of the genus Lactarius Pers and used for protection against predator and parasite organisms. The possibility of using these substances to suppress tumor cells is also discussed. </jats:sec> <jats:sec> Methods: The biological effect of the juice of L. pergamenus, L. quietus, and L. volemus, as well as methylene chloride, extracts obtained from fresh, frozen and dried basidiomes of L. pergamenus was studied. Purification of individual fractions of hexane extract from the basidiomes was performed by chromatography on a silica gel column and their analysis by done by thin layer chromatography and gas chromatography mass spectrometry. </jats:sec> <jats:sec> Results: The sesquiterpene aldehydes were shown to be the main component of the chemical protection system of Lactarius. These agents are present in the milky juice of the Lactarius fungi, and they are easily oxidized by oxygen in the air. The milky juice of these mushrooms is also rich in higher fatty acids and phthalates. Phthalates possess an insecticidal effect, while higher fatty acids are capable of forming adducts with sesquiterpenes that provide emulsion stability. Water-soluble substances, in particular, the polyphenol oxidase enzyme, whose activity correlates with the content of milky juice in basidiomes, also play a protective role. </jats:sec> <jats:sec> Conclusion: Milky juice of mushrooms of Lactarius Pers. genus is a stable balanced emulsion containing a large number of substances. One part is responsible for the toxic effects on other organisms, while the other part determines the chemical stability of the emulsion. Altogether, they create an effective system of protection of fungi of the Lactarius genus against microorganisms, insects, mollusks, and animals.
Introduction. A search continues for effective means which may reduce the overload of harmful factors, eliminate the inflammatory process, and reduce stress on the periodontal tissues during the active period of orthodontic treatment. We developed and patented the gel composition (GC) Benzidaflaziverdine prepared based on Proteflazid® (flavonoids) and benzydamine hydrochloride (BH) T-Sept® for the local treatment of the periodontal tissues in the form of a periodontal dressing in the orthodontic patients.
The aim of this study was to evaluate the cytocompatibility of different combinations of components in gel composition based on flavonoid complex and benzydamine hydrochloride (Benzidaflaziverdine) used for the treatment of periodontal diseases in orthodontic patients. For this, mechanisms of their cytopathic and cytoprotective effects will be explored using cultured human and mouse cells.
Methods. We studied the effect of different supplements used in GC Benzidaflaziverdine on the viability of pseudonormal human keratinocytes of the HaCaT line and mouse fibroblasts of the BALB-3T3 line, and mouse macrophages of the J774.2 line. Various methods of cell survival assessment were used: MTT-assay, staining of cells with fluorescent dyes Hoechst 33342 and Propidium iodide (PI), as well as a test for the genotoxic effects on cells (DNA
comet assay). The antioxidant properties of the developed GC variants were evaluated using DPPH (1,1-diphenyl-2-picrylhydrazyl), Merck (Dam-stadt, Germany), and DCFDA-H2 (2’,7’-dichlorodihydrofluorescein diacetate).
Results. We demonstrated that the Sample containing gel base and BH in the form of a solution (Tantum Verde®) possessed weak prooxidant properties. While the Sample contained gel base, powdered BH (T-Sept®) and Sample containing gel base and powdered BH (T-Sept® and Proteflazid®) possessed pronounced antioxidant properties.
Conclusions. Tests with DPPH and DCFDA dyes were used to confirm the hypothesis regarding the cytoprotective effect of the patented gel composition Benzidaflaziverdine for local application in the form of a periodontal bandage due to the antioxidant activity of the flavonoid complex, which reaches the maximum level at the 2nd hour of exposure. This gel composition can be recommended for use in clinical periodontology for medical support of orthodontic patients before and during the active phase of orthodontic treatment.
Keywords: Flavonoid complex, Proteflazid®, benzydamine hydrochloride, gel composition, antioxidant activity, cell culture, periodontal diseases, orthodontic patients.
Засіб у формі гелевої композиції для лікування запальних та дистрофічно-запальних захворювань тканин пародонта, який містить як активний компонент бензидаміну гідрохлорид, який відрізняється тим, що містить бензидаміну гідрохлорид у формі розтертої до порошкоподібного стану таблетки Т-септ та додатково містить як активний компонент протефлазід у складі гелевої основи, що містить альгінат натрію, ніпагін та воду для ін'єкцій, при наступному співвідношенні компонентів, мас. %: альгінат натрію 5,0 ніпагін 0,15 бензидаміну гідрохлорид, що відповідає вмісту 1 розтертої до порошкоподібного стану таблетки Т-септу 0,03 протефлазід 15,0 вода для ін'єкцій 79,82.