A bisphenol-formaldehyde resin was synthesized using the polycondensation method of bisphenol A with formaldehyde. Road bitumen has been modified with this resin. The possibility of its use as a road petroleum bitumen modifier has been established for different contents of the synthesized resin. It has been established that the introduction of synthesized bisphenol-formaldehyde resin into the composition of bitumen significantly increases its heat resistance. The synthesized resin and modified bitumens were characterized using IR spectroscopy. The change in the composition and properties of the bitumen modified with bisphenol-formaldehyde resin has been described. 

УДК: 612.822:616.831-092.18

This review aims to summarize the world's scientific sources that highlight the current vision of the role of the brain glymphatic system in the utilisation of end metabolites from the central nervous system. It has been reported that protein clots or aggregates that are produced in brain cells and, importantly, failure of their elimination can cause cognitive problems in neurodegenerative diseases. In particular, Alzheimer's and Parkinson's dis- ease, as well as the other neurodegenerative diseases, the aging process can be reproduced in experimental models by overproducing these conglomerates.Current investigations are focused as well on clarifying changes in brain glymphatic drainage in the condition of traumatic brain injury. Modern research has shown that acute brain injury, including traumatic brain injury, subarachnoid hemorrhage, or stroke, dramatically alters glymphatic function. It is evident that aging is a critical risk factor for neurodegenerative diseases. It has also been experimentally proven that glymphatic activity decreases with aging. Accordingly, this can lead to the accumulation of misfolded and hyperphosphorylated proteins, and thus the brain becomes vulnerable to the development of neurodegenerative pathology. Comprehensive analysis of the causes and mechanisms of glymphatic system dysfunction will help to predict and develop methods for diagnosing and treating serious neurodegenerative diseases and traumatic brain injuries.