New 4-aryl-3-(morpholin-4-yl)-2-arylimino-2,3-dihydrothiazole derivatives 1.1-1.16 were obtained using the Hantzsch reaction by condensation of N-(morpholin-4-yl)-N'-arylthioureas with the corresponding α bromoacetophenones in alcohols. Synthesized hydrobromides 1.1-1.8 were formed as crystalline precipitates during the boiling of the reaction mixture. Bases 1.9-1.16 were obtained by neutralizing the corresponding hydrobromides with NH4OH solution. It has been proposed a possible mechanism of the reaction that is based on the study of the structure of the synthesized compounds. The structures of the synthesized compounds were confirmed by 1H NMR spectroscopy with its special techniques (NOESY and ROESY experiments). It has been shown the formation of the isomer 4-(4'-chlorophenyl)-3-(morpholin-4-yl)-2-(4'-chlorophenylamino)-2.3-dihydrothiazole on the basis of compound 1.14. Pharmacological screening of synthesized derivatives of 4-aryl-2-arylimino-2,3-dihydrothiazole compounds revealed the analgesic effect in the model of visceral pain caused by the introduction of acetic acid to white mice. The anti-inflammatory effect of the synthesized compounds was evaluated in vivo by reducing limb edema in rats with carrageenan-induced inflammation. Thus, the synthesized compounds have analgesic and anti-inflammatory activity.
This review summarizes the scientific knowledge concerning the impact of vitamins, magnesium, and trace elements on various mechanisms contributing to the possible treatment and prevention of COVID-19, including its delayed consequences. A search was conducted in various databases, including PubMed, Scopus, ClinicalTrials.- gov, and Web of Science. Among the main mechanisms involved in the effects of the studied micronutrients, immune-boosting, antioxidant and anti-inflammatory effects were also highlighted. The analyzed clinical trials confirmed that supplementation with higher daily doses of some micronutrients can reduce SARS-CoV-2 viral load and hospitalization time. The potential role of most known vitamins in preventing, treating COVID-19, and rehabilitating patients was considered. The most promising agents for combating COVID-19 and its consequences might be the following vitamins: vitamin D, ascorbic acid, polyunsaturated fatty acids (PUFAs), and some B complex vitamins. Inorganic elements deserving attention include magnesium and trace elements, such as zinc, selenium, copper, and iron. Some associations were found between micronutrient deficiencies and COVID-19 severity in children, adults, and older people. Patients can obtain the aforementioned micronutrients from natural food sources or as supplements/- drugs in various dosage forms. The reviewed micronutrients might be considered adjunctive treatment strategies for COVID-19 patients.
Keywords: COVID-19; ascorbic acid; copper; fat-soluble vitamins; iron; magnesium; micronutrients; selenium; vitamin B complex; zinc..