The shrinkage of water resources, as well as the deterioration of its quality as a result of industrial human activities, requires a comprehensive approach relative to its protection. Advanced oxidation processes show high potential for the degradation of organic pollutants in water
and wastewater. TiO2 is the most popular photocatalyst because of its oxidizing ability, chemical stability and low cost. The major drawback of using it in powdered form is the difficulty of separation from the reaction mixture. The solution to this problem may be immobilization on a support (glass beads, molecular sieves, etc.). In order to avoid these difficulties, the authors propose to prepare a catalyst as a titanium plate covered with an oxide layer obtained with laser treatment. (2) Methods: In the present work, we generated titanium oxide structures using a cheap and fast method based on femtosecond laser pulses. The structurized plates were tested in the reaction of methylene blue (MB) degradation under UVA irradiation (365 nm). The photocatalytic activity and kinetic properties for the degradation of MB are provided. (3) Results: Studies of X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm a titanium oxide layer with laser-induced generated structures
that are called “spikes” and “herringbones”. The structurized plates were effective photocatalysts, and their activity depends on the structure of the oxide layer (spike and herringbone). (4) Conclusions: The immobilization of the catalyst on a solid support can be performed in a fast and reproducible manner by using the technique of laser ablation. The layers obtained with this method have been shown to have catalytic properties.
Keywords: femtosecond laser processing self-organized microstructures; herringbone structure; engineered materials; photocatalysis; waste water treatment
Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specifc architecture with specifc bacteriological and photocatalytic properties. Femtosecond lasergenerated surface structures, such as laserinduced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation efect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to infuence the adhesion of the bacterial strain on diferent surfaces. On the
laserstructurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Keywords Micro/nano-structured surface, Reduced bacterial adhesion, Ultra-short pulsed laser treatment, Photocatalytic activity