In this work, the title compound was synthesized via the Claisen–Schmidt condensation of a 2-((5-acetyl-4-methylthiazol-2-yl)amino)isoindoline-1,3-dione with 2-fluorobenzaldehyde. The structure of the synthesized compound (yield 62%) was confirmed by 1H, 13C NMR, and LC–MS spectra. According to US NCI protocols, the compound displayed a high level of antimitotic activity against tested human tumor cells, with mean GI50/TGI values of 15.72/50.68 μM. The drug-like properties of the synthesized compound were evaluated using SwissAdme, revealing satisfactory drug-like parameters, and it presents interest for the design of new synthetic agents with biological activity.

UDC 615.073/.074:615.27:615.453.4:543.48:547.673.5

The aim of the work was to develop a simple, rapid, economic spectrophotometric method for the determination of meldonium in capsules based on the reaction with alizarin.
Materials and methods. Analytical equipment: double-beam UV-visible spectrophotometer Shimadzu UV 1800 (Japan), a pair of 1 cm matched quartz cells, software UV-Probe 2.62, laboratory electronic balance RAD WAG AS 200/C, pH-meter I-160МI. Pharmacopoeial standard sample (CRS) of meldonium dihydrate (Sigma-Aldrich, (≥98 %, HPLC)), alizarin (Synbias), capsules Metamax (Darnytsia) 250 mg, Vasopro (Farmak) 500 mg, Mildronate (Grindex) 500 mg, dimethylformamide (“Honeywell Riedel-de Haen”).
Results and discussion. A spectrophotometric method for determining meldonium in capsules by reaction with alizarine has been developed. The absorption maximum of the formed complex in dimethylformamide was at a wavelength of 517 nm. Stoichiometric ratios of reactive components «meldonium- alizarin» were 1:1. Validation of the developed analytical method for the determination of meldonium in medicines was carried out in accordance with the requirements of the SPhU. The optimal conditions for performing the quantitative determination of meldonium have been established: concentration of alizarin solution – 0.8 %, volume 0.8 % alizarin solution – 0.5 ml, heating time – 20 min, temperature – 95±2 °C. Linearity has been in the concentration range of 0.0402–0.1073 mg/mL, the limit of detection – 2.84 μg/mL, and the limit of quantification – 8.59 μg/mL. The eco-friendliness of the developed analytical method was carried out using the analytical eco-scale, AGREE, and GAPI methods.
Conclusions. The developed method can be used as an arbitration method for the routine analysis of meldonium capsules

A bisphenol-formaldehyde resin was synthesized using the polycondensation method of bisphenol A with formaldehyde. Road bitumen has been modified with this resin. The possibility of its use as a road petroleum bitumen modifier has been established for different contents of the synthesized resin. It has been established that the introduction of synthesized bisphenol-formaldehyde resin into the composition of bitumen significantly increases its heat resistance. The synthesized resin and modified bitumens were characterized using IR spectroscopy. The change in the composition and properties of the bitumen modified with bisphenol-formaldehyde resin has been described.