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Abstract: It was synthesized N-[5-(4-fluorobenzyl)-1,3-thiazol-2-ylJchroman-3-carboxamide. The
structure of the title compound was confirmed by *H NMR spectroscopy and elemental analysis. The
synthesized compound complies with Lipinski, Muegge, Ghose, Veber, and Egan rules. ADME and
toxicity of the compound are analyzed, and Swiss target prediction of the compound has been carried
out to analyze the preferred target. The title compound exhibited remarkable anticancer activity against
all the tested cell lines and was more active than classical anticancer drugs — gefitinib, 5-fluorouracil,
cisplatin, and curcumin. The metabolic pathway mediated by Cytochrome P450 was evaluated for the
title compound. It was found that the main pathways are aromatic hydroxylation of fused benzene ring,
which should not cause toxic effects.
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1. Introduction

Among the five-membered nitrogen-containing heterocyclic compounds, thiazole is
among the most commonly used drugs. In particular, the 2-aminothiazole scaffold is considered
a privileged scaffold for the discovery of anti-cancer agents based on biological targets, such
as tubulin protein, histone acetylase/histone deacetylase (HAT/HDAC), phosphatidylinositol
3-kinases (P13Ks), Src/Abl kinase, BRAF kinase, epidermal growth factor receptor (EGFR)
kinase and sphingosine kinase (SphK) [1,2]. Additionally, various 2-aminothiazole-based
derivatives have been used as pharmaceutical agents against different human diseases with high
therapeutic effects [2].

The chromane cycle is also a structural unit of versatile, biologically attractive scaffold.
It is essential to many natural compounds [3] and medicines with a simple structure and mild
adverse effects [3-9]. They are also used as food additives and flavorings, in cosmetics, as
optical brighteners, as laser medium in a dye laser, and as agrochemicals [10]. The most
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important are 2H and 4H-chromenes — coumarins, chromen-4-ones and flavonoids. Their
structures are shown in Figure 1.
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Figure 1. Structures of important chromane derivatives.

Most chromane derivatives are currently considered privileged structures in medicinal
chemistry [3-9].

These facts indicate that thiazole derivatives integrated with coumarin moieties are
promising to evaluate their biological activity, particularly antitumor activity [1, 11]. It also
should be noted that the synthesis methods of both heterocyclic derivatives are well-developed
and easy to realize [2, 10, 12].

2. Materials and Methods

2.1. Materials.

All reagents and solvents were purchased from Sigma Aldrich Chemicals and were used
without further purification.

2.2. Chemistry.

The melting point was determined in an open capillary and was uncorrected. Elemental
analysis was performed on a vario MICRO cube automatic CHN analyzer. The 'H NMR
spectra were recorded using Varian Mercury 400 (400 MHz) at 298 K. Chemical shifts were
reported as o, ppm relative to tetramethylsilane (TMS) as an internal standard. The coupling
constant J was expressed in Hz.

2.2.1. Synthesis of chroman-3-carboxylic acid 4.

2.04 g (0.01 mol) of ester 3 and 0.5 g of NaOH were dissolved in 50 mL of a water-
alcohol mixturel:1. The reaction solution was refluxed for 1 hour, and it was poured into a
glass beaker containing 10 g of 3% Sodium Amalgam. The reaction mixture was kept for 2
hours. The solution of sodium salt of acid was isolated by decantation. After being acidified
with hydrochloric acid, precipitate 4 was filtered and recrystallized from ethanol.

2.2.2. Synthesis of 2H-chromene-3-carbonyl chloride 5.

1 g of chroman-3-carboxylic acid 4, 1 mL of thionyl chloride, and 10 mL of benzene
were refluxed for 1 hour. The 2H-chromene-3-carbonyl chloride 5 was isolated by vacuum
distillation and used without further purification.

2.2.3. Synthesis of N-[5-(4-fluorobenzyl)-1,3-thiazol-2-yl]chroman-3-carboxamide 7.

To asolution of 2.08 g (0.01 mol) of 5-(4-fluorobenzyl)thiazol-2-ylamine 6 and 1.5 mL
of triethylamine in 15 mL of dioxane was added a solution of 1.97 g (0.01 mol) of chromane-
3-carbonyl chloride in 20 mL of dioxane at room temperature. After 30 min, the reaction
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mixture was poured into 100 ml of water. The resulting precipitate 7 was filtered and
recrystallized from a 1:1 mixture of alcohol and DMFA.

The synthesized compound 7 is a light yellow crystalline substance, soluble in DMFA,
DMSO, acetic acid, moderately soluble in cold ethanol, insoluble in water and non-polar
organic solvents. Melting point 181-182°C, yield 78%.

'H NMR (400 MHz, DMSO dg) §, ppm: 2.71-2.92 (m, 2H (4H-chromane)); 3.97 (t, 2H,
J = 8.7 Hz (2H-chromane)); 4.02 (s, 2H CHz); 4.32 (m, 1H (3H-chromane)); 6.7 (d, 1H, J =
8.0 Hz (8H-chromane)); 6.8 (t, 1H, J = 8.0 Hz (7H-chromane)); 6.99-7.06 (m, 4H CsH4F); 7.12
(s, 1H (1H-thiazole)); 7.23-7.26 (m, 2H (5,6H-chromane)); 12.21 (s, 1H, NH). Found, %: C,
65.15; H, 4.68; N, 7.56. Anal. Calcd. for C20H17FN202S, %: C, 65.20; H, 4.65; N, 7.60.

2.3. Prediction of ADME-Tox and metabolic pathways.

The pharmacokinetic properties (absorption, distribution, metabolism, excretion) and
toxicity parameters for compound 7 were determined in order to estimate the perspective of
using the title compounds in the process of drug development. The pkCSM [13], Swiss ADME
[14], Protox_II [15], and OSIRIS methods [16] were used. The ligand-based target prediction
based on 2D and 3D similarity methods [17] used web resources The SwissTargetPrediction
[18]. Metabolic pathways were predicted by using [19, 20].

3. Results and Discussion

In this article, we report the synthesis antitumor activity of N-[5-(4-fluorobenzyl)-1,3-
thiazol-2-yl]Jchroman-3-carboxamide 7 and analysis of future perspectives of this compound as
a potential chemotherapeutic agent Compound 7 was synthesised according to Scheme 1.

\>”\NH
dloxane w
r.t.,, 30 min

SOCI

©\/j)‘\OH 1) NaOH w k€O, COOEt
+ f
2) Na-Hg DMFA

1

Scheme 1. Reaction pathway of synthesis of N-[5-(4-fluorobenzyl)-1,3-thiazol-2-ylJchroman-3-carboxamide 7.

Salicylic aldehyde 1 was reacted with ethyl acrylate 2 under Baylis-Hilman reaction
[21-23] conditions to give chromene derivative 3. The sodium salt of the acid was recovered
by hydrolysis of ester 3 using sodium amalgam [24]. Acid 4 was converted to the corresponding
acylchloride 5, which, by the reaction with 5-(4-fluorobenzyl)thiazol-2-ylamine 6 [25], gave
the target product N-[5-(4-fluorobenzyl)-1,3-thiazol-2-yl]chroman-3-carboxamide 7 with yield
78%. The physicochemical and spectral characteristics of intermediates 3-6 are consistent with
the literature data [23-25].
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The synthesized compound 7 is a light yellow crystalline substance, soluble in DMFA,
DMSO, acetic acid, moderately soluble in cold ethanol, insoluble in water and non-polar
organic solvents.

3.1. In silico-target prediction.

To investigate the potential mode of action of N-[5-(4-fluorobenzyl)-1,3-thiazol-2-
yl]lchroman-3-carboxamide 7 Swiss Target Prediction software was used which showed
promising affinity for a variety of enzymes, including kinases, which are targets of anticancer
drugs, as well as Voltage-gated sodium channels (VGSCs) [26, 27] and G-protein-coupled
receptors (GPCRs) implicated in cancer cell invasion and metastasis [28]. The top 15 targets
are illustrated in Figure 2a.

The potential of compound 7 as a kinase inhibitor is also predicted by the
Molinspiration Cheminformatics resource [29] (bioactivity score 0.04), Figure 2b. Protein
kinases are important targets for anticancer agents [30-32].

The bioavailability of investigated compound 7 is illustrated in Figure 2c. The pink area
represents the optimal range for each property, such as lipophilicity: LOGP between —0.7 and
+5.0; size: MW between 150 and 500 g/mol; polarity: TPSA between 20 and 130 A?; solubility:
log S not higher than 6; a fraction of sp3 of the hybridized carbon atom (INSATU): not less
than 0.25; and flexibility: no more than 9 rotatable bonds. According to the bioavailability
radar, compound 7 was predicted to be orally bioavailable. However, there is a slight deviation
in the INSATU parameter.

The amide 7 did not violate any of the drug-likeness parameters, including Lipinski
[33], Muegge [34], Ghose [35], Veber [36], and Egan [37] rules, and is not a PAINS [38] and
Brenk [39] compound. According to the GSK 4/400 rule (Higher Risks of Toxicity if Log P>4
and MW>400) [40], no toxicity risks are expected for compound 7, but according to the Pfizer
3/75 rule (lower toxicity when ¢ Log P<3 and TPSA>75 A?) [41], the Log P value is not
optimal.

The value of intestinal absorption (human) is 81.59%. The percentage of absorption
(%ADbs) is calculated using the known formula [42]:

%Abs = 109 — 0345 * TPSA (1)

Compound 7 was predicted to have good skin (log Kp =-2.818), BBB (log BB = 0.094),
and CNS (log PS = -1.965) permeabilities.

The BOILED-Egg Plot illustrates the ability to passively absorb in the gastrointestinal
tract (HIA) and penetrate the blood-brain barrier (BBB). The white area indicates a high
probability of passive absorption through the gastrointestinal tract, and the yellow area
indicates a high probability of penetration into the brain. Additionally, points are colored blue
if predicted to be actively effluxed by P-glycoprotein (PGP+) and red if predicted to be non-
substrate of P-gp (PGP-).

According to the BOILED egg diagram (Figure 2d), a high probability of passive
absorption of the gastrointestinal tract was predicted for compound 7. It also suggests that
compound 7 does not cross the blood-brain barrier (BBB) and has limited central adverse
effects. Investigated amide 7 can be actively effluxed by P-glycoprotein. Reference compounds
(Dasatinib, Gefitinib, 5-fluorouracil (5-FU), Curcumin, and Cisplatin) are not substrates of P-

gp.
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Figure 2. (a) Top 15 targets of compound 7 as predicted using SwissTarget; (b) Bioactivity score according to
molinspiration cheminformatics; (c) Oral bioavailability radar; (d) BOILED-Egg plot.

3.2. Anticancer activity.

As already mentioned, both 2-aminothiazole and chromane derivatives have the
antitumor potential [1, 11]. Taking this fact into account, N-1,3-thiazol-2-ylJchroman-3-
carboxamide 7 was investigated for its antitumor activity. The anticancer activity of compound
7 was initially tested according to the National Cancer Institute (NCI) Developmental
Therapeutic Program [www.dtp.nci.nih.gov]. The assays were performed in accordance with
the NCI protocol [43—46] against 60 human tumor cell lines derived from nine types of human
cancers (leukemia, non-small cell lung cancer, colon cancer, central nervous system cancer,
melanoma, ovarian cancer, renal cancer, prostate cancer, and breast cancer cell lines). The
results of the screening are shown in Figure 3.

As can be seen from Figure 3, compound 7 showed high antitumor activity with GP
values of 67.75 — -56.28% against the tested range of cancer cells. The average GP value was
13.14%. In particular, an excellent cytotoxic effect was observed against the lines MDA-MB-
435 (Melanoma) GP = -56.28%, OVCAR-3 (Ovarian Cancer) GP = -47.79%, and SF-295
(CNS Cancer) GP = -46.64%. Also compound 7 exhibited a significant cytotoxic effect on
RXF 393 (Renal Cancer) GP = -34.32%, NCI-H522 (Non-Small Cell Lung Cancer) GP = -
19.59%, OVCAR-4 (Ovarian Cancer) GP = -17.63%, SF-539 (CNS Cancer) GP = -17.31%,
A498 (Renal Cancer) GP = -14.68%, HT29 (Colon Cancer) GP =-12.59% ta NCI/ADR-RES
(Ovarian Cancer) GP =-10.72% cell lines.

The protocol of the antitumor activity study is presented in Table 1 and Figure 4. The
results of tested compound 7 were given by three response parameters (Glso, TGI, and LCso)
for each cell line from the concentration of percentage growth inhibition on nine cancer
diseases. The Glso parameter (growth inhibitory activity) is the concentration of the compound
that causes a 50% decrease in net cell growth. The TGI value (cytostatic activity) is the
concentration of the compound that results in total growth inhibition. The LCso value (cytotoxic
activity) corresponds to the concentration of the compound that causes a net 50% loss of initial
cells at the end of the 48-hour incubation period.
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Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent
Leukemia
CCRF-CEM 19.85 -
HL-60(TB) -5.18 f—
K-562 12.62
MOLT4 30.92 —
RPMI-8226 20.77 -
SR 4.36 -
Non-Small Cell Lung Cancer
AB49/ATCC -2.07 p—
HOP-62 16.60 =
HOP-92 29.74 —
NCI-H226 67.75 I
NCI-H23 50.87 —
NCI-H322M 30.63 —
NCI-H460 1.44 —
NCI-H522 -19.59 —
Colon Cancer
COLO 205 -7.49 pr—
HCC-2998 2223 -
HCT-116 6.55 -
HCT-15 15.77 L
HT29 12.59 p—
KM12 21.20 -
SW-620 20.72 -
CNS Cancer
SF-268 40.68 —
SF-295 -46.64
SF-539 -17.31
SNB-19 38.80 —
SNB-75 -3.23 fr—
U251 7.51 -
Melanoma
LOX IMVI 37.00
MALME-3M 39.17
M14 8.62
MDA-MB-435 -56.28
SK-MEL-2 9.75
SK-MEL-28 33.40
SK-MEL-5 26.63
UACC-257 47.18
UACC-62 48.81
Ovarian Cancer
IGROV1 31.69 —
OVCAR-3 -47.79
OVCAR-4 -17.63 —
OVCAR-5 25.75 —
OVCAR-8 23.32 -
NCI/ADR-RES -10.72 —
SK-0V-3 13.95
Renal Cancer
786-0 24.76
A498 14.68
ACHN 14.79
CAKI-1 14.21
RXF 393 34.32
SN12C 39.13
TK-10 4.81
Uo-31 27.68
Prostate Cancer
PC-3 17.96
DU-145 6.19
Breast Cancer
MCF7 16.77
MDA-MB-231/ATCC 22.38
HS 578T 5.12
BT-549 56.19
T-47D 16.59
MDA-MB-468 -0.07
Mean 13.14
Delta 60.42 —
Range 124.03
150 100 50 0 -50 -100 -150

Figure 3. Sixty human tumor cell lines’ anticancer screening data at single dose assay.

Table 1. NCI DTP in vitro testing results of compound 7 at five-dose assay (104-10°M).

Disease Cell line Gleo. | TGL | LCso, Disease Cell line Gleo, | TGl | LCso,

uM UM HM uM UM UM

CCRF-CEM 0.255 >100 >100 IGROV1 0.719 >100 >100

HL-60(TB) 0.194 0.631 >100 OVCAR-3 0.218 0.636 4.36

K-562 0.0616 | >100 >100 . OVCAR-4 1.600 - >100

Leukemia MOLT-4 0.745 >100 >100 Ovarian OVCAR-5 0.684 >100 >100

RPMI-8226 0.326 2.22 >100 cancer OVCAR-8 0.413 >100 >100

SR 0.0384 | >100 >100 NCI/ADR-RES 0.317 >100 >100

SK-OV-3 0.435 >100 >100

AbB49/ATCC | 0.326 3.55 >100 LOX IMVI 0.770 >100 >100

sml\:l)ln(;e“ EKVX - - - MALME-3M 2.05 | >100 | >100

lung HOP-62 0.430 4.42 >100 Melanoma M14 0.240 >100 >100
cancer HOP-92 | 0130 | 270 | >100 MDA-MB-435 | 0.0379 | 0.211 ;

NCI-H226 23.3 >100 >100 SK-MEL-2 0.245 0.941 >100
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Glso, TGl, L Cso, . . Glso, TGl, L Cso,
Disease Cell line " * Disease Cell line " *
uM UM HM uM UM UM
NCI-H23 0.482 >100 >100 SK-MEL-28 0.823 >100 >100
NCI-H322M 248 >100 >100 SK-MEL-5 0.333 >100 >100
NCI-H460 0.318 1.17 >100 UACC-257 0.692 >100 >100
NCI-H522 0.136 0.591 >100 UACC-62 0.417 >100 >100
COLO 205 0.307 1.06 >100 786-0 0.910 >100 >100
HCC-2998 0.523 >100 >100 A498 0.200 | 0.772 >100
Col HCT-116 0.406 >100 >100 ACHN 151 >100 >100
olon
cancer HCT-15 0.191 >100 >100 Renal CAKI-1 0.467 >100 >100
HT29 0.251 121 >100 cancer RXF 393 0.267 0.916 >100
KM12 0.141 15.2 >100 SN12C 0.751 >100 >100
SW-620 0.272 >100 >100 TK-10 0.517 3.17 >100
UO-31 1.02 >100 >100
SF-268 0.897 >100 >100 MCF7 0.0828 | >100 >100
SF-295 0.223 1.62 >100
MDAMB- | o381 | 502 | >100
CNS SF-539 0.215 0.569 58.4 231/ATCC
cancer SNB-19 242 >100 >100 Breast HS 578T 0.325 4.32 >100
SNB-75 0.282 3.87 >100 cancer BT-549 >100 >100 >100
U251 0.345 1.77 >100 T-47D 0.557 8.54 >100
Prostate PC-3 0.277 >100 >100 MDA-MB-468 0.316 >100 >100
cancer DU-145 0.368 254 >100
Leukemia Non-Small Cell Lung Cancer Colon Cancer
100 T T 100 '. o T T 100 ¥ T
g 50 g 50 Tk g 50
E o é 0 f% 0
2 &5 ®.50
-0 g Ia rl7 4‘3 ; 4 -0 g r‘s ‘7 7‘5 ; a -0 g Ia rlr 4‘3 :ﬁ a
Log, , of Sample Conoeniration ( Molar ) Log, , of Sample Conentration ( Molar ) Log, , of Sample Conceniration ( Molar )
CCRF-CEM—&—  HL-60(TB)-—-4—-- K-562--- == AB4GIATCC —e— HOP-62-- &=~ HOP-92---f--- COLO 205—&—  HCC-2998--4—-- HCT-116---f--
MOLT-4---E1--  RPMI-8226---@--~ SR---#m mgmség::g: Nl\é‘chggg--:: NCI-H322M--- 4 SﬁTg;S;'.ZE'_‘: HT29---@--- KM12- ==
Qvarian Cancer

CNS Cancer
T

 Percentage Growth
o

-100 - - ;
-2 Bl -7 ] 5 -4

Log, , of Sample Concentration ( Malar )
SF-268 —5— SF-295-—4—~- SF-539---f--
SNB-19----E} -~ SNB-75---8--~ U251--= 4=

Renal Cancer

5 8 7 Kl 5 4
Log,, of Sample Concentration ( Malar )
786-0—o— A498 - - 4=~ ACHN--=de---
SN12C---#--

RXF 393 ---@---
UO-31------

Melanoma
T T

&
S
/

MDA-MB-435----5---

T
o -~
L L 1 -100 L
& ] T & 4 U] -8 2 =] - 4
Log,, of Sample Cancentration ( Molar ) Log, , of Sample Concentration ( Malar )
LOX IMVI—&—  MALME-3M -~~~ M14---de-- IGROV1—&— OVCAR-3--¢—~ OVCAR-4--- 4=~
SK-MEL-2--@--  SK-MEL-28---#-- OVCAR-5---3--- OVCAR-8---@-~ NCIADR-RES---#---
SK-MEL-5-- k- UACC-257 -+~ UACC-62--©~-- SK-OV-3---—A--
Prostate Cancer Breast Cancer
== T T 100 == . T T

\,
\,
\,
N,

a

/
(
Percentage Growth
o
3

&
S

£l

PC-3—e—

-100
-8 7 6 K 4 K 8 7 & 5 4

Log,, of Sample Concentration ( Molar ) Log, of Sample Concentration ( Malar )

DU-185-=4-~: MCF7—&— MDA-MB-231/~=4~~- HS 578T--- -
BT-549---8--- T47D---@-- MDA-MB-468--#--

Figure 4. Dose-response curves (% growth versus sample concentration at NCI fixed protocol, uM) were
obtained from the NCI’s in vitro disease-oriented human tumor cells line of compound 7 on nine cancer

diseases.

The title compound 7 exhibited remarkable anticancer activity against all the tested cell
lines. The most sensitive to the compound was Leukemia and Prostate Cancer cell lines, and
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the compound significantly inhibited the growth of Melanoma, Colon Cancer, Renal Cancer,
and Non-Small Cell Lung Cancer tumor cells. The effectiveness of inhibition of tumor cell
growth of the claimed compound exceeds that of the classical anticancer drugs gefitinib, 5-
fluorouracil, cisplatin, and curcumin. The antitumor effect of the tested compound 7 against K-
562 (Leukemia), SR (Leukemia), MDA-MB-435 (Melanoma), and MCF7 (Breast Cancer) cell
lines was observed in nano concentrations.

To interpret the results of the antitumor activity screening, we calculated the selectivity
index (SI) at the Glso level of compound 7, which is equal to the ratio of the average MG-MID
activity (uM) for all cell lines to the average value of the corresponding subpanel of cancer.
The value of the Sl index in the range of 3-6 refers to moderate selectivity. A value of SI > 6
indicates high selectivity for the corresponding cell line. Suppose Sl < 3, the antitumor effect
is considered non-selective [47]. In this context, the active compound 7 demonstrates moderate
selectivity against the Leukemia cell line (Table 2).

However, high selectivity was observed for individual cell lines: K-562 (Leukemia) Sl
= 22.24 (full cancer panel), SI = 5. 422 (Leukemia panel); SR (Leukemia) SI = 35.68 (full
cancer panel), SI = 8.698 (Leukemia panel); MDA-MB-435 (Melanoma) SI = 36.15 (full
cancer panel), SI = 16.20 (Melanoma panel) and MCF7 (Breast Cancer) SI = 16.55 (full cancer
panel), SI = 50.92 (Breast Cancer panel).

We also evaluated the metabolic pathway of compound 7 mediated by Cytochrome
P450. It was found that the main pathways are aromatic hydroxylation of the fused benzene
ring, hydroxylation of aromatic carbon, hydroxylation of non-terminal aliphatic carbon
adjacent to the aromatic ring, alpha-hydroxylation of carbonyl group, N-hydroxylation of
secondary arylamide, and dehydration of the pyran cycle. Formation of a potentially toxic
metabolite such as M11 [48] is not expected (Figure 5)

M14 o o M5, 6

M1: 6-OH Score = 0.32
M6: 3-OH Score =0.12 Rank 14

M2: 7-OH Score = 0.32 Rank 1 % /’:%H

M3: 8-OH Score = 0.32

MS: 2-OH Score =0.02 Rank 27 ‘

M4: 5-OH Score = 0.02 Rank 27

- F FN

(0]
M7: 2-OH Score =0.26 M8: Score =0.26

nF @@***Q

M9
o o M10
M9: Score =0.26 M10: Score =0.26

Figure 5. Predicted pathway of title compound 7.

Rank 4
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Table 2. The average inhibitory concentration of tumor cell growth (Glso, uM) of compound 7 in comparison
with known anticancer agents - gefitinib, 5-fluorouracil, cisplatin, curcumin, and selectivity index (Sl) at the
Glso level of compound 7.

Compound 7 and Cancer panel / Glso (C, pM)
reference drugs L* NSCLC | ColC | CNSC M ov RC PC BC MG-MID

Compound 7 0.334 2.111 0.799 | 0.884 | 0.614 | 2.136 | 0.838 | 0.395 | 4.216 1.370

SI** of cpd 7 4.101 0.649 1.715 | 1550 | 2.231 | 0.641 | 1.635 | 3.468 | 0.325

Gefitinib 3.54 7.81 7.02 8.14 5.28 6.63 2.67 1.65 7.81 3.24

5-Fluorouracil 15.1 >100 8.4 721 70.6 61.4 45.6 22.7 76.4 52.5
Cisplatin 6.3 9.4 21.0 4.7 8.5 6.3 10.2 5.6 13.3 9.48
Curcumin 3.7 9.2 4.7 5.8 7.1 8.9 10.2 11.2 5.9 7.41

*L — Leukemia, NSCLC — Non-small cell lung Cancer, ColC — Colon Cancer, CNSC — CNS Cancer, M —
Melanoma, OV- Ovarian Cancer, RC — Renal Cancer, PC — Prostate Cancer, BC — Breast Cancer, MG-MID —

the average inhibitory concentration for the full panel of cancer cell types tested; **SI — Selectivity index at the
Glso level.

The calculations performed using OSIRIS Property Explorer for compound 7 do not
expect mutagenic, tumourigenic, irritant, or toxic reproductive effects. According to Protox II
online resource: Predicted LDso = 300mg/kg (Toxicity Class: 3).

4. Conclusions

N-[5-(4-fluorobenzyl)-1,3-thiazol-2-yl]Jchroman-3-carboxamide was synthesized by
the reaction of chroman-3-carbonyl chloride with 5-(4-fluorobenzyl)thiazol-2-ylamine. This
compound complies with Lipinski, Muegge, Ghose, Veber, and Egan rules. It displays
favorable pharmacokinetics indices, a good ADME-Tox profile, and a remarkable metabolic
pathway, which does not involve the formation of toxic metabolites. Title compound is useful
as a promising scaffold in the designing of novel active anticancer candidates.
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