Rhodanines are recognized as privileged heterocycles in medicinal chemistry. The main achievements include the development of drug-like molecules with numerous biological activities as well as approved drugs. The Furan nucleus is considered one of the promising heterocyclic cores in medicinal chemistry that showed numerous ranges of activity. The combination of several heterocycles in a one molecule commonly provides much more interest in the enhanced activity profile of its analogs than their parent separate constituents. Such conjugates are promising objects for modern medicinal chemistry. In this review paper recent advances in the synthesis and biological activities rhodanine-furan conjugates which its application in the different field of drug discovery.
A crucial direction in the progress of modern medical chemistry is the development and improvement of theoretical investigation methods of drugs mechanisms of action, predicting their activity, and virtual design of new drugs. This review describes the history of targeted search for biologically active compounds, current in silico approaches and tools used in the rational design of potential drugs, in particular the main computational strategies used in modern drug design are presented and outlines the main methodologies for implementing these strategies.
In the present work, we presented an efficient synthesis and anticancer activity evaluation of some new 3-R-6-(5-arylfuran-2-yl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. We have shown that the proposed synthetic protocols provided the possibility to design triazolothiadiazoles diversity with a considerable chemical novelty. The structures of target substances were confirmed by using 1H NMR spectroscopy, mass spectrometry and elemental analysis. The synthesized compounds were selected by the National Cancer Institute Developmental Therapeutic Program for the in vitro cell line screening. Among all the substances tested, three compounds exhibited significant cytotoxic activity.
Synthesis, anticancer and antimicrobial properties of some N-aryl-2-(5-aryltetrazol-2- yl)acetamides
The synthesis, anticancer and antimicrobial properties of novel N-aryl-2-(5-aryltetrazol-2-yl)acetamides were discussed. Novel N-aryl-2H-tetrazoles were synthesized and modified in order to obtain the compounds with a satisfactory pharmacological profile. The structures of target substances were confirmed by using 1 H spectroscopy, mass spectrometry and elemental analysis. Anticancer activity screening was carried out within the framework of Developmental Therapeutic Program of the National Cancer Institute's (DTP, NCI, Bethesda, Maryland, USA).
The compounds with significant levels of anticancer activities have been found that can be used for further optimization. The antimicrobial activity of the synthesized substances was evaluated by the value of the MIC and minimum fungicidal and bactericidal concentration. The findings exhibited that the compounds possessed moderate antimicrobial potential