UDC: 615.277.3:547.76].012:542.9

In vitro study and characterization of anticancer activity of new heterocyclic derivative N(5methyl[1,3,4]thiadiazol2yl)propionamide. Methods. The cell culture; MTT assay. Results. We synthesized N(5methyl[1,3,4]thiadiazol2yl)propionamide, which possessed diuretic, cardioprotective, and anti-inflammatory effects. Here, we investigated its cytotoxicity effect towards the tumor cell lines of various tissue origins: liver (HepG2), breast (MCF 7), lung (A549), cervical (KB3 1), and leukemia (HL 60) cells, as well as towards the non-tumor cells (НЕК293 and NIH3T3). The IC50 values of the synthesized compound for tumor cells were in the range of 9.4–97.6 μg/mL. We found that the human hepatocellular carcinoma HepG2 cells were the most sensitive to the action of N(5methyl[1,3,4]thiadiazol 2yl)propionamide with the IC 50 value of 9.4 μg/mL. The studied derivative slightly inhibited the growth of the pseudo normal HEK293 and NIH3T3 cells. Conclusions. The anti prolife rative activity of N(5methyl[1,3,4]thiadiazol2yl)propionamide dropped in the order: hepatocarcinoma > leukemia > breast carcinoma cells. Thus, we revealed in the molecule of N(5methyl[1,3,4]thiadiazol2yl)propionamide a combination of the diuretic, cardioprotec tive, anti-inflammatory and anticancer activities, which is of great significance for this agent
as a potent anticancer medicine

UDC: 615.277.3:547.78].012:542.9

In vitro study and characterization of anticancer activity of heterocyclic derivative — [3-allyl-4-(41-methoxyphenyl)-3H-thiazole-2-ylidene]-(32-trifluoromethylphenyl)amine hydrobromide

New 4-aryl-3-(morpholin-4-yl)-2-arylimino-2,3-dihydrothiazole derivatives 1.1-1.16 were obtained using the Hantzsch reaction by condensation of N-(morpholin-4-yl)-N'-arylthioureas with the corresponding α bromoacetophenones in alcohols. Synthesized hydrobromides 1.1-1.8 were formed as crystalline precipitates during the boiling of the reaction mixture. Bases 1.9-1.16 were obtained by neutralizing the corresponding hydrobromides with NH4OH solution. It has been proposed a possible mechanism of the reaction that is based on the study of the structure of the synthesized compounds. The structures of the synthesized compounds were confirmed by 1H NMR spectroscopy with its special techniques (NOESY and ROESY experiments). It has been shown the formation of the isomer 4-(4'-chlorophenyl)-3-(morpholin-4-yl)-2-(4'-chlorophenylamino)-2.3-dihydrothiazole on the basis of compound 1.14. Pharmacological screening of synthesized derivatives of 4-aryl-2-arylimino-2,3-dihydrothiazole compounds revealed the analgesic effect in the model of visceral pain caused by the introduction of acetic acid to white mice. The anti-inflammatory effect of the synthesized compounds was evaluated in vivo by reducing limb edema in rats with carrageenan-induced inflammation. Thus, the synthesized compounds have analgesic and anti-inflammatory activity.