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The paper analyses a network with given input and output flows in each of its nodes.
The basis of this analysis is the algorithm for determining the set of solutions of the lin-
ear equations system, using the Gaussian method. The power of the set determines the
structural entropy of the system. By introducing uncertainty into the value of part of the
information flows, the deviation of the network from its equilibrium state is simulated.
The set of potential solutions, as a part of the total set of the system solutions, deter-
mines the statistical entropy of the system. The probability entropy is calculated for a
network with four nodes and a total flow of 10 erlangs with a sampling step of 1 erlang.
Calculated entropy values for 1, 2, 3, and 4 uncertain flows out of a total of 16 flows
that are transmitted between nodes of the fully connected network. As a result of the
conducted statistical analysis of entropy values, the optimal number of statistical intervals
for entropy values is determined: 4, 11, 24, and 43 intervals for 1, 2, 3, and 4 uncertain
flows, respectively. This makes it possible to highlight the set of flows in the system that
have the greatest influence on the entropy value in the system. The obtained results are
of practical importance, as they enable the detection of deviations of the network from its
equilibrium state by monitoring the passage of traffic on individual branches of a complex
telecommunication network. Since, as shown in our previous works, the task of determin-
ing the complete set of solutions of the system for the number of nodes greater than 4 has
a significant computational complexity, the application of the algorithm to such networks
requires an increase in the discretization step of the values of information flows in the
network. Another way to reduce computational complexity can be to reduce the set of
analysed solutions to a subset of solutions close to the equilibrium state of the system.

Keywords: entropy, solution of a system of linear equations, self-similarity, multifrac-
tality.
2010 MSC: 15A03, 15A06, 68-04, 68R99 DOI: 10.23939/mmc2022.04.936

1. Introduction

Analysis of the processes occurring in telecommunication systems with given values of the total flows in
the nodes of the system is a classic task that attracts the attention of many Ukrainian and foreign re-
searchers. Traditionally, the most developed and widespread of them are the tensor method of network
modeling [1,2], methods based on the Kerners theory of three phases [3], as well as numerous modifica-
tions of random graphs theory (Erdos—Reney, Watts—Strogats, Barabashi-Alberta models), percolation
theory [4]. This is important for ensuring the security of information systems using telecommunication
technologies [5,6], as well as other aspects of protected data transfer [7-9].

Nevertheless, most of them provide an opportunity to obtain only integrated indicators of the entire
network. At the same time, the software and hardware used by the main telecommunication means of
service providers are being improved, and the introduction of neural network technologies allows the
use of complex algorithms to analyze the state of the network. In addition, the requirements for the
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complexity of the systems being studied to enable the obtaining of significant results in a practical
sense are growing significantly. This creates an additional incentive for the study of existing and
development of new methods and algorithms for the study of networks with information flows, which
impose additional conditions dictated by the content of the applied problems to be solved.

One of the possible methods of detailed analysis of the network state with the specified operating
conditions, due to both technical and economic factors of its operation, is to find all possible states.
Identifying all possible states and predicting transitions between them is the most detailed and reliable
information about the state of the network. Therefore, determining the set of all possible states and
predicting their change over time makes it possible to detect any changes due to external influences:
increase or decrease bandwidth between network nodes, increase or decrease traffic in its nodes and
any other changes. This makes it possible to improve load balancing algorithms and increase security
guarantees in information transmission systems.

A detailed analysis of the network makes it possible to apply the principle of maximum entropy.
This algorithm has been traditional for a long time in the tasks of finding information flows in networks
that arise in various fields of science and technology — from modeling of financial flows to tasks of load
balancing in telecommunication networks [10-12]|. At the same time, some authors emphasize that the
maximum entropy method is more effective among the other traditional methods (fuzzy control and
heuristic strategy, the center of mass of the cluster, round-robin scheduling) [13].

One of the most important areas where the principle of maximum entropy can be applied is the
prediction of dynamic changes in networks, such studies are carried out in [14].

Another important aspect of the development of the maximum entropy method is its use in such
modern branches of science as artificial intelligence and quantum computing. The prediction of dynamic
changes in quantum mechanical systems, which are expected to be used in the latest technologies of
quantum communication and the Internet, is given in [15]. Algorithms for determining equilibrium
states in systems with flows between its nodes are used to develop methods of artificial intelligence
and machine learning [16].

If a set of system states is determined, it is theoretically possible to predict system states at future
observation points based on correlations between network states that form so-called Markov sequences.

For the least complex discrete systems, in which a correlation is observed only between adjacent
observation points, the state of the system can be described by a simple model based on a matrix of
transitions between system states:

P" = || A" x P° (1)
where the P? denotes vector of probabilities of the initial state of the system, the P™ denotes probability
vector at the n-th observation moment, the || A|| denotes a square matrix of transitions between system
states.

The model based on the transition matrix is convenient to use if the dimension of the discrete
system, or the number of its states is not very large.

2. Statement of the problem
2.1. Consideration of the system entropy

Previously, we have studied a system with specified values of flows in each of its nodes [17]. It has
been shown that even with a small number of nodes and low power of a set of possible flow values
in the system, the total number of its solutions is quite large, amounting to more than two million
for systems with three nodes and total traffic of 20, and systems with four nodes and total traffic of
10. This makes it impossible to apply the classical model (1) because the dimension of the matrix of
transitions between possible states of the system becomes huge:

dim || Al > 2-10°% x 2 - 10°.

Therefore, the paper considers a different approach to the analysis of changes in the system state over
time, based on the concept of entropy and the most general pattern, it means that all processes in a
closed system occur in the direction of its increase. Entropy is one of the numerical characteristics
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of the degree of complexity of systems that have different origins, can be both artificial and natural
systems. Its definition is based on the number of possible states of the system and the probability of
the system to be in one state or another. There are definitions of entropy for discrete and continuous
systems. For discrete systems, entropy is determined by adding for all possible states the probability
of this state multiplied by the logarithm of this probability taken with the inverse sign:

H=-=> pilog(ps),

where the index means addition over all possible states of the system.
For continuous systems, the concept of differential entropy is introduced in many sources (as an
example [18]), which is used in the theory of information transfer:

== [ bla) loglp(w)] da

o

W
7

where p(z) is the probability density of x values that describe the state of the system.

The concept of entropy can be applied not only to static systems that are in one of the possible
states, but also to processes that are determined by changes in the states of the system. Changes
in the states of the system can occur both independently of each other and statistically correlated
transitions from one state to another, such systems and processes are called Markov. A method based
on the uncertainty of some system parameters has been developed to calculate the entropy of such
systems. The entropy of such a system is determined on the basis of many possible values of uncertain
parameters of the system, and this uses the classical concept of entropy of a discrete system with some
set of parameter values that determine its state.

2.2. Determining the set of the system solutions

In [17] the algorithm for determining the complete set of solutions for a network of information flows
with constraints on the value of the flow in each node of the system is described. By such constraints,
we have chosen the values of the total values of input and output streams for each node of the system.
In addition, there are restrictions on stream values: each value is a non-negative integer. The flow
matrix of such a system in the most general formulation of the problem is formed from by n? flows
between each pair of system nodes.

To determine the complete set of the system solutions, the Gaussian method was used for a system
of 2 x n equations, where one equation is linearly dependent on the other due to the condition of
equality of flows in the input and output nodes of the system. Based on the structure of the system
fundamental solution, it can be argued that the whole set of solutions can be determined by the set
(n — 1)2 of non-negative integers, which we will define as a kernel of the system solutions set. The
power of this set, can also be determined by the Gaussian method applied to the system of equations
for a matrix of flows of dimension n — 1.

Next, we present the basic relations that state the problem for the system of dimension n. Therefore,
the matrix of flows in the system is a square n X n matrix:

I'=1: E I (2)
Z‘n,l in,n

The system that defines the general set of solutions of the problem is :

111+ i, = 81,

where {s1,...,s,} is the set of input flows, and {ds,...,d,} is the set of output flows.
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3. The main results

3.1. Calculation of entropy by introducing indeterminate flows in the system

Consider an example of calculations for a system formed by four nodes with specified for each node
values of input {si,s9,ss,s4} and output {di,ds,ds,ds} flows and a given condition of equality of
sums of input and output flows: Z?‘Zl S; = Z?‘Zl d; = S. The algorithm defines a set of the system
solutions, each of them represents 16 unknown values of the flow matrix x;. Each such type solution
can be expressed in 9 independent variables A; and therefore each set of variables expresses a unique
solution of the problem. The analytical expression that defines the set of solutions of the problem has
the following form:

(i1 =dy —s9— 53— 544+ >0 N,
119 = do — ()\2 + A3 + )\7),

113 = d3g — ()\4 + Xg + )\8)7

i14 = dg — (A1 + A5 + Ag),

Q21 = 52 — (A1 + X2 + Xe),

i31 = Ao,

i1 = A6,

iog = A1, (@)
199 = S3 — ()\3 + M+ )\5),

i3z = A3,

33 = A4,

i34 = As,

193 = S4 — ()\7 + Ag + )\9),

42 = A7,

43 = As,

44 = A9

This is the general solution of the system (3).

3.2. Determination of entropy by introducing indeterminate variables in the system flow matrix

Let us analyze the complexity of the problem associated with all possible ways to select independent
variables for the same problem of calculating the states of a system with four nodes. Based on the
general theory of the linear equations systems, it is obvious that one can choose from one to nine
independent system variables that correspond to individual elements of the matrix of information
flows (2). The number of possible choices from one to three independent variables is determined by
the binomial coefficient, as they can all be independent:

Cle =16, C3 =120, C35 = 560.

When choosing 4 or more (up to 9, the maximum number of independent variables), keep in mind that
not every combination of variables is a set of independent variables. Thus, for four variables that are
in one row or column, one of the variables can be expressed through others, as well as for 5, 6, 7, 8
and 9 variables, of which 4 are in one row or column.

Next, let us look at an example of solving the problem for 5 levels of ranking the values of infor-
mation flows, if the total traffic in the system is 10 erlangs,

{31782783784} = {1747 37 2}7 {d17d27d37d4} = {47 07274}' (5)

The total number of solutions of the problem is 54795. Then the entropy of the problem, provided
that all flows are defined, is equal to

Hy = log,(54795) = 4.739.
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The developed algorithm also enables to determine the entropy of system states, provided that the
value of one or more variables in the system is unknown. As mentioned above, the total number of
solutions in the system given by system (4) and boundary conditions (5) is 54795, and the values of
the components of the matrix (2) belong to the set of integers {0, 1,2, 3,4,5,6}.

The following are the results obtained by calculating the entropy of the system for all possible
combinations of unknown variables, namely the minimum, maximum, mathematical expectation and
entropy variance for the number of independent variables from one to four. For more variables, the
task becomes too difficult to perform on a personal computer. Its solution is possible only through the
use of more powerful computing tools and with the use of algorithms for parallel calculations.

Table1 shows the largest and smallest values of entropy determined on sets of 1, 2, 3 and 4
indeterminate system variables, as well as mathematical expectations and standard deviations of these
values, the number of series members and the number of intervals in the statistical distribution.

Table 1. The value of the entropy of the matrix of information flows and its statistical characteristics.

The number of flows | Huyin | Hmax | Hav | Hstdev | The number of sets | The number of ranges
1 1.29 1.75 | 1.50 0.15 16 4
2 2.51 3.39 | 2.97 0.19 120 11
3 3.54 4.88 | 4.38 0.23 560 24
4 4.89 6.25 | 5.74 0.25 1812 43

Figures 1-3 show the entropy values calculated at the network nodes for one, two, three and four

undefined flows respectively.
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1. The entropy of a network formed by four nodes is calculated by two indeterminate flows.
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Fig. 2. The entropy of a network formed by four nodes is calculated by three indeterminate flows.
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Fig. 3. The entropy of a network formed by four nodes is calculated by four indeterminate flows.

The form of the given entropy graphs allows us to conclude that the entropy of the system de-
termined by us has the property of self-similarity on the set of tuples of independent variables that
determine individual values of flows in the network.

In Figs.4, 5 shows the histograms of the distribution of entropy values obtained for the studied
system and for the entropy calculated for 3 and 4 undetermined nodes respectively, the number of
entropy value intervals on these histograms is 24 and 43.
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Fig.4. Histogram of entropy values constructed Fig.5. Histogram of entropy values constructed
for three selected nodes. for four selected nodes.

As can be seen from Figs. 4, 5, the histograms of the distribution of entropy values have heavy tails,
from this it can be concluded that the entropy values have the property of self-similarity on a set of
different sets of uncertain flows in the network [5].

4. Conclusions

The algorithm for determining the entropy of a network with given values of incoming and outgoing
traffic in each node of the network is studied in the paper. The concept of structural entropy is used,
as the basis of the most well-known definition of the entropy of a complex system and is determined
on the basis of the number of the system states. The number of network states is calculated on the
basis of the possible number of solutions of the linear equations system simulating a network of a given
configuration with given values of the input and output flow in each node of the network.
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Another achieved result of the conducted research is the application of the concept of statistical
entropy, which is based on the known probabilities of the system being in one or another state. This
is necessary in order to analyze the dynamic characteristics of the network, which determines its
behaviour in case of deviation from the equilibrium state. The deviation of the network from the
equilibrium state is modeled by introducing uncertain flows that are part of a set of system solutions,
and statistical entropy is calculated based on the probability of an uncertain flow obtaining a certain
value from a set of possible system solutions.

The algorithm is applied to a network of four nodes with a total value of flows in each node of 10
erlangs and a flow discretization value of 1 erlang. Thus, the conducted analysis is based on a set of
the system solutions, the power of which is approximately equal to 2 - 10%. The analysis is performed
for network with 1, 2, 3, and 4 unknowns out of 16 flows that fully define the system. Calculated
entropy values determined for each specific set of unknown flows from the 16 flows in the system. On
the basis of calculated entropy values, entropy graphs are constructed for all possible sets of unknown
flows in the system. Such data make it possible to predict the process of redistribution of information
flows in the system, leading to an increase in entropy in the system.

A statistical analysis of the obtained entropy values is carried out. Based on the histograms of the
entropy values distribution, the optimal number of entropy values intervals for the analysis is calculated:
4 for one unknown flow value, 11 for two, 24 for three, and 43 intervals for four unknown flow values.
Statistical analysis simplifies the quantitative analysis of network entropy, while highlighting the sets
of flows whose uncertainty leads to the largest increase in entropy. This enables to predict the most
important areas in the network, highlighting them among the others. It also makes it possible to
determine where significant changes in traffic occur, without conducting direct measurements, but
only by analyzing changes in the entropy of information flows in the network.

The developed method can be used for more complex networks with more than four nodes. But at
the same time, it is necessary to use discretization with a larger interval to reduce the possible number
of values of information flows in networks.

The practical value of the developed method lies in the fact that for a network of a given configu-
ration and with a given number of flows, it is possible to determine the branches of the network that
lead to the greatest change in entropy, and therefore, deviations of the network from the equilibrium
state. In such areas, additional traffic analyzers can be installed to monitor its values and dynamics
of changes.

Conducting further research is associated with reducing the computational complexity of the prob-
lem. The studied set of the system solutions can be reduced, taking into account only the subset of
solutions that is close to the equilibrium state of the system. That’s why it is possible to carry out a
detailed analysis of the system without increasing the step of discretization of the values of information
flows in the system. Solutions that determine the equilibrium state of the system can be found by the
method of maximum structural entropy.
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YV poboTi TPOBOIUTHCS aHAJI3 MEpeXKi i3 3aJaHNMM BXiTHUMU Ta BUXIJTHAMU ITOTOKAMU ¥
KOKHOMY 11 By3sii. OCHOBOIO IIHOT0 aHAJI3Y € aJTOPUTM BU3HAYEHHS MHOXKUHU PO3B’si3KiB
CHCTEeMU JTHIHHUX PiBHAHDL, ocHOBaHUi Ha MeToi ['ayca. [loTyKHicTh MHOXKWHN BU3HATAE
CTPYKTYpHY eHTpomio cucreMu. IIInsxom BBe/leHHS HEBHU3HAYEHOCTI Y 3HAYEHHS YACTH-
HU iHMOPMAIITHIX TTOTOKIB MOJIE/TIOETHCSA BiIXUJIEHHST MepexKi BiJT 11 piBHOBAXKHOTO CTaHYy.
MuoxkuHa MOTEHIITHUX PO3B’sA3KiB, SKi € YaCTHHOIO 3arajbHOI MHOXKUHHU PO3B’I3KiB CH-
CTeMU, BU3HAYAE CTATUCTUIHY €eHTPOMII0 cucTeMu. IMOBipHiCHA €HTPOIIiS pO3paxOBaHa, 11T
MepexXi i3 YJOTUpMa BY3JIaMU Ta CyMapHUM HMOTOKOM, SKUU cTAaHOBUTH 10 epsanris i3 Kpo-
KoM juckperu3ariii 1 epianr. O6uunciieni 3HadeHHs enTporil 1ys 1, 2, 3 Ta 4 HeBU3HAYEHUX
MOTOKIB i3 3araJibHOI KiJIbKOCTi 16 MOTOKIB, sIKi IEPeAIOTHCS MiXK By3JIaMU TTOBHO3B' I3HOT
Mepexi. Y pe3yabTaTi IPOBEIEHOr0 CTATUCTUIHOrO aHAJII3Y 3HAYEHbL €HTPOIil BU3HAtE-
Ha ONTUMAJIbHA KUIBKICTh CTATUCTUYHHUX IHTEPBAJIB /I 3HaUeHb eHTporil: 4, 11, 24 1 43
inTepBaJsm mig 1, 2, 3 Ta 4 HeBU3HAUYEHNX MTOTOKIB BimosigHo. Ile m103B0sg€ BUIimT MHO-
JKAHU MTOTOKIB y CHCTEMi, IO MAalTh HAWOIIBINUI BJIUB HA 3HAYEHHS €HTPOIIl Yy CACTEMI.
OpiepxkaHi pe3yIbTaTh MAIOTh TPAKTUYHE 3HAYEHHS], OCKITTbKU YMOKJIUBJIIOIOTH BUSIBJICHHS
BiJIXMJIEHb MepexKi BiJI 11T PIBHOBAXKHOTO CTaHy NMIJISXOM KOHTPOJIIO 3& ITPOXO/PKEHHSM Tpa-
dbiKy Ha OKPEMUX JIJISTHKAX CKJIAIHOI TeIEKOMYHIKAIiitHOT Mepexki. OCKIIbKH, K TOKa3aHO
y HAIUX TOMEPeIHiX poboTax, 3ajada BU3HAUYCHHS TOBHOI MHOXKWHU PO3B’sA3KIB CHCTEMA
JJIsE KLTBKOCTI By3J1iB OisibInie 4 Ma€ 3HAYHY OOUUC/IIOBAJIBHY CKJIAIHICTD, TO 3aCTOCY BAHHS
AJTOPUTMY JI0 TAKUX MEPEK MOTpedye 30LIbINIeHHsT KPOKY JUCKpeTH3allil 3HaueHb iHpOp-
MaIlifHIX TOTOKIB y Mepexi. [HIuM crrocoboM 3MeHIeHHsT 00UNCTIOBAIBHOI CKJIAIHOCTI
MOXKe OyTU 3MeHIIeHHsS MHOXKWHHU aHAJII30BAHUX PO3B’sI3KiB /10 I IMHOXKUHU PO3B’I3KiB,
10 HAOJINYKEH1 0 PIBHOBaYKHOT'O CTAHY CHCTEMU.

Knw4osi cnosa: enmponisa, po3e’asku cucmemu ATHITHUT DIGHAHD, CaMONOdiOHICMD,
MYALTUPPAKMANOHICTG.
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