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Abstract–The authors of the article consider decelerating 

structures made of homogeneous material, which have a 

periodic structure in space. Such systems are used to 

concentrate the energy of high-frequency electromagnetic waves 

in order to increase the sensitivity of devices designed for their 

registration, increase the efficiency of the interaction of a beam 

of free electrons with a slowed electromagnetic field, for the 

manufacture of structural elements in waveguide devices, and 

for generators of monochromatic radiation in the terahertz and 

optical ranges (effect Vavilov-Cherenkov radiation). The 

parameters of the wave process are studied on the basis of an 

exact analytical solution based on the cylindrical Bessel and 

Hankel functions for a decelerating system with axial symmetry 

in the form of a spiral. To obtain numerical solutions, the 

optimization problem of the system of nonlinear equations of a 

complex variable is solved. The conducted studies establish the 

relationship between the transverse and longitudinal wave 

numbers and the attenuation coefficient of the electromagnetic 

wave. A detailed analysis of the solutions of the equation showed 

that, in addition to the classical solution that determines the 

surface wave, other solutions are possible for which the 

concentration of the electromagnetic field inside the structure is 

higher. 

Keywords–decelerated electromagnetic waves, cylindrical 

functions, transverse wavenumber, longitudinal wavenumber. 

I. APPLICATION OF SLOWWAVES STRUCTURES

One of the parameters of high-frequency electromagnetic 
field sensors is the resonance frequency of the interaction 
between the external electromagnetic field and the sample 
under study and the phase delay of the electromagnetic wave 
in a field-sensitive element of the sensor. The structure and 
length of the sensitive element are the main parameters that 
determine the sensitivity of the entire device. 

Devices with a uniform internal microstructure and 
characteristic dimensional parameters, which by the order of 
magnitude coincide with the size of the wave of the 
investigated field, are classical. Many of them have the 
property of self-similarity, and therefore can be considered as 
fractal objects [1-3]. The effect of wave deceleration is quite 
effectively used in electromagnetic field sensors of the 
microwave range, where they are used as “feedback elements 
in oscillator-type circuits in which the slow wave structure 
acts as a delay line or as a phase-shifting element” [4]. 

Decelerating structures also find a number of other 
applications [5]: 

 generation of electromagnetic waves by electron
beams (Vavilov-Cherenkov effect);

 construction of lasers based on free electron beams
with Cherenkov radiation;

 structural elements of elementary particle accelerators;

 generators of ultra-short pulses for radar and lidar
equipment;

 miniaturization of waveguide technology components
in the microwave range.

Fig. 1a, 1b, 1c and 1d show the geometries of the most 

common decelerating structures made of a homogeneous 

conductive material [5]. 

Fig. 1. Decelerating structures made of homogeneous materials: a) 

meanders; b) spiral; c) combs and d) combs double row. 

Devices with a complex microstructure are also the subject 

of functional materials science research due to the 

development of nanotechnology [6, 7]. The ability to control 

the microstructure of devices significantly increases the 

potential scope of their application, in particular, it enables 

the transition to the optical range with the simultaneous use 

of optical sensors [8-10]. This led to the rapid development 

of the branch of science, which is characterized as the use of 

materials with close to zero dielectric constant [11, 12]. 

II. FORMULATION OF THE PROBLEM

The previously applied differential-symbolic method 
allows us to study the propagation processes of 
electromagnetic waves, which can be modelled by the one-
dimensional equation of a telegraph line [13, 14] in conductor 
structures. However, it is also effective for studying objects 
and processes that can be modelled by the Helmholtz equation 
based on equivalent electrical circuits [6]. 

The most general solution to problems of generation, 
propagation, absorption and detection of an electromagnetic 
wave is obtained as a result of solving the system of Maxwell's 

a) b) 

c) d) 
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equations with given boundary and/or initial conditions. For 
all guiding structures having axial symmetry, the system of 
Helmholtz equations with boundary conditions given on the 
surface of the structure, which is a conductor, reduces to the 
two-dimensional Helmholtz equation. 

Two types of solutions are considered, which define 
transverse magnetic (TM) or transverse electric (TE) 
electromagnetic waves. For the first type of waves with 
boundary conditions which determing equality to zero value 
of the electric field on the surface of the conductor or equality 
to zero derivative of the value of the magnetic field in the 
direction perpendicular to the surface of the conductor. For the 
use a structure as a device for slowing down electromagnetic 
waves, the application where the longitudinal component is 
the electric component, i.e. the TE wave, prevails. 

Thus, the problem of investigating the wave process is 
reduced to the two-dimensional Helmholtz equation (1) with 
a zero value of the electric field on the outer surface of the 
structure: 
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where  , ,A x y z is the value of the field amplitude, which 

can be represented by the method of separation of variables as 

a product of two functions  Z z  and  ,T x y ,   is the

longitudinal wave number, which is determined by the 
periodicity of the structure along the direction of wave 
propagation,   is the transverse wavenumber. 

Structures with cylindrical symmetry are very important 

from the point of view of practical application and 

prevalence. Thus, to determine the characteristics of the field 

in the decelerating structure with axial symmetry, it is 

necessary to determine two wave numbers: longitudinal   

and transverse  . Wave attenuation is determined by the 

imaginary parts of the longitudinal and transverse wave 

numbers. The most important parameter of the slowing wave 

structure is the transverse wave number: if 
2 0  , then there 

is an effect of slowing down of the electromagnetic wave, and 

its phase speed becomes less than the wave speed outside the 

structure (speed of light): phv c . 

The wavelength in the spiral can be estimated according to 

the model given in [5]. Provided that the distance between 

adjacent turns of the spiral is very small compared to its 

radius, we find the wavelength in the spiral: 

 0 tg     

where 0 is the wavelength in a free space. Thus, the formula

for the longitudinal wave number, has the form: 


sin

k


  

where   is the angle of the spiral (Fig. 1b). 

The more accurate model is based on a solutions of the 

system (1) in cylinder coordinates. Then the mathematical 

model of this problem is reduced to an ordinary differential 

equation of the second order (5), the variable of which is the 

distance r  to the axis of symmetry of the system.  
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The general solution of this equation is determined by a 

linear combination of cylindrical Bessel and Newmann 

functions  nJ r ,  nN r : 

      n nR r A J r B N r     

where n is the order of these functions, A  and B  are some 

constants. За межами структури поле швидко затухає, 

тому розв’язок задачі має ви 

For a spiral structure with axial symmetry (Fig. 1b), the 

solution of problem (5) is divided into two independent 

analytical expressions. In order for the expression not to grow 

indefinitely at 0r  , inside the structure the dependence of 

the field strength on the radius is determined by the Bessel 

function: 

    , nT r A J r   

Outside the structure, the solution is defined by Hankel 

functions, which decay faster as 1 r : 

      2
, nT r C H r   

The condition of non-discontinuity of electric and 

magnetic field vectors on the surface of the structure makes 

it possible to obtain a transcendental equation with respect to 

the transverse wave number  : 
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This equation includes such parameters of the system as 

radius R  and  , and wave number k .  

III. ANALYSIS OF THE WAVE PROCESS IN THE SPIRAL 

STRUCTURE 

Expression (8) is a transcendental equation, which 
includes cylindrical functions of the complex argument: 

Bessel the first (  1J R ) and of zero order (  0J R ) and

Hankel of the second kind of the first (
   2

1H R ) and of zero 

order (
   2

0H R ). 

Further analysis is reduced to the solution of the 

optimization problem given by the equation, which is a 

problem for determining the roots of systems of two 

nonlinear equations (9), which expresses the equality of the 

phases and modules of the left and right sides of equation (8): 
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The new variables of the problem are the module r  and the 

phase   of the product R  of the transverse number   

and the radius of the spiral R , presented in the exponential 

form (10): 


jR r e    

The properties of the wave process in a wide range of 

values of the number R . Analysis of relation (8) shows that 

the existence of solutions to the problem is determined by the 

phase of the number R , provided that the longitudinal wave 

number k is a real value. The equality of the modules can be 

achieved by selecting the value of the parameter  
2

k ctg ,

which is the square of the product of the longitudinal 

wavenumber by the cotangent of the spiral rotation angle. 

In this way, it is necessary to investigate the difference in 

the phases of expressions  
2
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. The studies are performed in 

a wide range of modulus values r  (from 410  to 310 ) and 

phase   (from   to   with step 100 ). 

The ranges of the existence of solutions of the system (10) 

(with an accuracy of phases equality 100 ) are found and 

listed in Table 1. 

TABLE I. RANGES OF VALUES OF THE MODULUS AND THE PHASE OF 

THE NUMBER R  FOR WHICH EXISTS SOLUTIONS OF THE PROBLEM (10,11) 

jR r e   

Modulus r Phase  , rad 

4 310 10  -1.571 (-90 deg); 1.723 (98.7 deg) 

3 210 10  -1.571 (-90 deg); 1.791 (102.62 deg) 

2 110 10  -1.571 (-90 deg); 1.885 (108 deg) 

0.1 -1.571 (-90 deg); 2.042 (117 deg) 

0.2 -1.571 (-90 deg); 2.136 (122.38 deg) 

0.3 0.4 -1.571 (-90 deg); 2.168 (124.22 deg) 

9 -1.571 (-90 deg); 3.016 (172.80 deg) 

10 11 -1.571 (-90 deg); 0.063 (3.61 deg) 

20 40 -1.571 (-90 deg) 

50 -1.571 (-90 deg); 0.031 (1.78 deg) 

50 100 -1.571 (-90 deg) 

The obtained phase values are approximate and make it 

possible to continue the search for a solution to the 

optimization problem. At this stage of the search for 

solutions, the entire problem is reduced to determining the 

values of the second unknown variable of the optimization

problem (module r ). 

For all investigated ranges of the value of the modulus of 

the transverse wave number, there is a solution when this 

number has only an imaginary part ( 2 1.571    ). This 

is a well-known solution for which the problem reduces to the 

following form: 


2 2k ctg

R


   

It is also known [5] that in such a system the greatest 

density of lines of force is observed near the turns of the 

spiral, and when moving away from the spiral outwards or 

towards the axis of symmetry of the structure, it decreases. 

Thus, the solution corresponding to the imaginary wave 

number   determines the surface wave process. Therefore, 

an important task is the study of other possible variants of the 

wave process, for which a greater concentration of 

electromagnetic field energy is observed inside the structure, 

and at the same time there is an effect of slowing down 

electromagnetic waves. 

Fig. 2. Contour plots in the plane of the modulus (vertical axis) and phase 

(horizontal axis) of the 
R

of the phase left side (dashed line on Fig. 

2a)) and right side (solid line on Fig. 2a) of the optimization task (9), 
and of the module left side (dashed line on Fig. 2b)) and module right 

side (solid line on Fig. 2b)) of this task 

a) 

b)
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In Fig. 2a and Fig. 2b shows the lines of the equal values 

of the phase and modulus of the left and right parts of the 

optimization task (10) in the plane of the module r  

(horizontal axis) and phase   (the vertical axis) of the 

number R , which are derived for solutions corresponding 

to the first row of Table 1, namely 1.723   (99 deg), 

4 310 10r    . 

In Fig. 2a, the horizontal dashed lines mean lines of equal 

phase for  
2

 , and the solide ones are lines of equal phase

for expression 
     
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. 

Fig. 2b shows the lines of equal module for  
2

  (dashed

line) and for 
     
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2

1 12 2

2

0 0
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 (solid line). 

TABLE II. VALUE OF REAL AND IMAGINE PARTS OF 

LONGITUDINAL WAVE NUMBER 

Transverse 

wavenumber 


Longitudinal wave number 
k

1 3 5 

3 1.7235 10 e j  1 3 5 

2 1.7915 10 e j  1 3 5 

1 1.8855 10 e j  1.1 0.07 j 3.03 0.02 j 5.02 0.01 j

2.1683.5 e j 3.01 1.89 j 3.95 1.44 j 5.53 1.03 j

3.016100 e j 12.53 99.21 j 12.53 99.17 j 12.54 99.09 j

0.031500 e j 15.50 500 j 15.50 500 j 15.50 500 j

According to the data in Table 1 and the ratio between the 

numbers k, longitudinal   and transverse   wave numbers

(
2 2 2k    ) , the values of the longitudinal wave number 

are determined for 1 5k   . 

Table 2 shows the calculated values of the transverse and 

longitudinal wave numbers for the radius structure 0.1 R м

. As we can see from this table, the values   found can have

both a real and an imaginary part, while the classical solution 

for determines only the real transverse wavenumbers. 

IV. CONCLUSIONS

The paper analyzes an analytical model that determines the 

value of transverse wave numbers in a spiral axisymmetric 

decelerating structure. In contrast to the known classical 

solution, solutions were found for which the transverse wave 

number has a real part, and the longitudinal wave number has 

an imaginary part. This means that in such a structure there 

can exist not only a surface wave, but also a wave whose 

energy is concentrated in the volume of the structure, but at 

the same time the wave is attenuated in the longitudinal 

direction. 
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