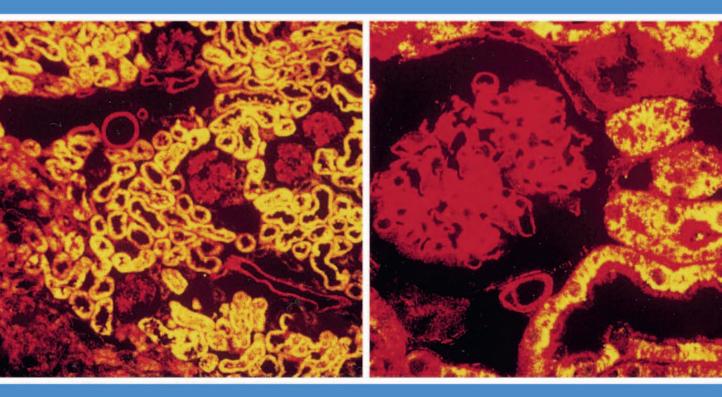

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/370603266


New insight into the role of TST-derived hydrogen sulfide, a key regulator of mesenteric homeostasis in health and during chronic fructose intake

Chapter · May 2023

FOUNDATIONS AND FRONTIERS IN ENZYMOLOGY

Sulfurtransferases Essential Enzymes for Life

Edited by Noriyuki Nagahara

Sulfurtransferases

FOUNDATIONS AND FRONTIERS IN ENZYMOLOGY SERIES

Series Editor: Munishwar Nath Gupta

Series Website: https://www.elsevier.com/books-and-journals/book-series/books-serieslanding-page-request-foundations-and-frontiers-in-enzymology

Foundations and Frontiers in Enzymology

Sulfurtransferases

Essential Enzymes for Life

Edited by Noriyuki Nagahara

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-18827-5

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Mica H. Haley Acquisitions Editor: Peter B. Linsley Editorial Project Manager: Michaela Realiza Production Project Manager: Omer Mukthar Cover Designer: Mark Rogers

Typeset by TNQ Technologies

Contents

Contributors xi Preface xiii

1.	3-Mercaptopyruvate sulfurtransferase: the molecular and functional properties	1
	Noriyuki Nagahara and Takaaki Ito	
	Adaptation of living organisms to oxidative and chemical	
	environments	1
	Molecular evolution of sulfurtransferases	2
	MST and evolutionarily related enzymes of TST	2
	Molecular, kinetic, and functional properties of MST	10
	Properties of the promoter region of the MST gene	23
	Multiple functions of MST related to catalysis	27
	Possible production mechanism of H ₂ S and polysulfide	
	from MST	31
	Localization of MST in rat and mouse	31
	MST expression in mouse developmental stages	43
	MST-knockout mouse	44
	Future perspective	49
	Acknowledgments	49
	References	49

2.	3-Mercaptopyruvate sulfurtransferase: a review of past and present perspectives	55
	Y. Ogasawara	
	Discovery and earlier characterization of 3-MST	55

	Comparison of 3-MST with thiosulfate sulfur transferase	
	(rodanase)	55
	Purification and catalytic reaction	56
	Amino acid sequence and protein structure	57
	Physiological role of 3-MST	57
	3-MST and rhodanese in selenium metabolism	58
	Methods for measuring 3-MP and 3-MST activities	58
	Clinical studies on 3-MST and the construction of 3-MST knockout mice	59
	Localization and significance of 3-MST in the central nervous system	59
	Involvement of 3-MST in sulfane sulfur (bound sulfur)	
	generation	60
	References	62
3.	The tales of fungal sulfurtransferases: lost, found, and stolen	67
	Sebastian Piłsyk	
	References	78
4.	3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide (H_2S), polysulfides (H_2S_n), and other S-sulfurated	
	signaling molecules	83
	Hideo Kimura	
	Introduction	83
	3MST produces H ₂ S	84
	H_2S and H_2S_n regulate neuronal transmission	87
	3MST as H_2S_n producing enzyme	88
	Signaling via S-sulfuration of target proteins	89
	Energy formation versus its suppression by H ₂ S	89

Cytoprotection against oxidative stress	91
Involvement of 3MST and H ₂ S in the pathogenesis of	
schizophrenia	91
Perspectives	92
References	93

5.	A persulfide shield: an endogenous reactive sulfur species in the forefront in the electrophile detoxification pathway	101
	Hisyam Abdul Hamid, Tsuyoshi Takata, Tetsuro Matsunaga and Takaaki Akail	ke
	Introduction	101
	Biosynthesis of biological polysulfides	103
	A "persulfide shield": proposed as an electrophile defense	
	mechanism	104
	RSS versus heavy metals	106
	RSS versus alkylating agents and xenobiotics	107
	Future directions of RSS-based research	109
	Acknowledgment	110
	References	110

6.	Thiosulfate sulfurtransferase: a model of essential enzyme with potential applications in medicine and biotechnology	119
	Silvia Buonvino, Giulia Cinotti and Sonia Melino	
	Introduction	119
	TST/rhodanese structure: a model for studying the protein	
	folding	121
	TST in the cell metabolism	123
	Diseases related to TST dysregulation	126
	TST in biotechnology	130
	References	133

7.	Chemical approaches to discover selective inhibitors of sulfurtransferases and transsulfuration enzymes	145
	Eita Sasaki and Kenjiro Hanaoka	
	Introduction	145
	Widely used inhibitors of CBS, CSE, 3MST, and rhodanese	147
	Chemical approaches to discover new inhibitors	150
	Conclusions	160
	References	161
8.	New insight into the role of TST-derived hydrogen sulfide, a key regulator of mesenteric homeostasis in health and during chronic fructose intake	165
	Oleh Revenko, Yaroslav Pavlovskiy, Iryna Kovalchuk, Maryana Savytska and Oksana Zayachkivska	
	Introduction	165
	The beneficial role of TST-derived hydrogen sulfide	166
	Summary	172
	References	172
9.	The S-adenosyl-L-methionine radical enzymes: the lipoic acid synthase and the biotin synthase	177
	Anna Bilska-Wilkosz	
	Metabolic role of lipoic acid	177
	Biosynthesis of lipoic acid	183
	Metabolic role of biotin	185
	The biosynthetic pathway of biotin	188
	Radical S-adenosyl-L-methionine superfamily of enzymes	191
	The lipoyl synthase	191

	The biotin synthase	195
	References	201
10	. Sulfur transferases in the pathways of molybdenum cofactor biosynthesis and tRNA thiolation in humans	207
	Silke Leimkühler and Moses Olalekan Ogunkola	
	Introduction	207
	Thiolation of tRNA	209
	Thiocarboxylate formation on the URM1 protein	213
	Moco biosynthesis	214
	MOCS3	217
	NFS1	219
	TUM1	224
	MTU1	225
	CTU1	226
	Conclusions	228
	References	228

Index 237

Contributors

Takaaki Akaike Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan

Anna Bilska-Wilkosz The Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland

Silvia Buonvino Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, Italy

Giulia Cinotti Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, Italy

Hisyam Abdul Hamid Department of Pharmaceutical Chemistry and Pharmacology, Faculty of Pharmacy, UiTM Selangor Campus Selangor, Malaysia

Kenjiro Hanaoka Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan

Takaaki Ito Department of Medical Technolog, Kumamoto Health Science University Faculty of Health Science, Kumamoto, Japan

Hideo Kimura Sanyo-Onoda City University, Yamaguchi, Japan

Iryna Kovalchuk Physiology Department of Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine

Silke Leimkühler Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany

Tetsuro Matsunaga Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan

Sonia Melino Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, Italy

Noriyuki Nagahara Isotope Research Institute, Nippon Medical School, Tokyo, Japan

Y. Ogasawara Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan

Moses Olalekan Ogunkola Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany

Yaroslav Pavlovskiy Physiology Department of Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine

Sebastian Piłsyk Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

Oleh Revenko Physiology Department of Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine

Eita Sasaki Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan

Maryana Savytska Physiology Department of Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine

Tsuyoshi Takata Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan

Oksana Zayachkivska Physiology Department of Danylo Halytskyy Lviv National Medical University, Lviv, Ukraine; Physiology Department of School of Medicine, American University Health Sciences, Signal Hill, CA, United States

Preface

This book focuses on "sulfurtransferases," a novel research subject, and tries to shed further light on why these enzymes are essential for life. We would like to provide up-to-date information regarding the interesting functions of sulfurtransferases to researchers investigating not only sulfurtransferases but also other enzymes. In addition to researchers studying enzymes from prokaryotic and eukaryotic cells, this book's target audience includes clinicians.

For over 50 years, studies have continued to elucidate the important physiological roles of sulfurtransferases in prokaryotes and eukaryotes. The sulfurtransferases include thiosulfate sulfurtransferase (rhodanese, EC 2.8.1.1), mercaptopyruvate sulfurtransferase (MST, EC 2.8.1.2), thiosulfate-thiol sulfurtransferase (EC 2.8.1.3), tRNA uracil 4-sulfurtransferase (EC 2.8.1.4), thiosulfate-dithiol sulfurtransferase (EC 2.8.1.5), biotin synthase (EC 2.8.1.6), cysteine desulfurase (EC 2.8.1.7), lipovl synthase (EC 2.8.1.8), molybdenum cofactor sulfurtransferase (EC 2.8.1.9), thiazole synthase (EC 2.8.1.10), molybdopterin synthase sulfurtransferase (EC 2.8.1.11), molybdopterin synthase (EC 2.8.1.12), tRNA-uridine 2-sulfurtransferase (EC 2.8.1.13). tRNA-5-taurinomethyluridine 2-sulfurtransferase (EC 2.8.1.14). tRNA-5methyluridine (54) 2-sulfurtransferase (EC 2.8.1.15), and L-aspartate semialdehyde sulfurtransferase (EC 2.8.1.16). Among these enzymes, rhodanese and MST have recently attracted increasing amounts of attention due to their reported ability to produce polysulfide and hydrogen sulfide. In this project, many researchers who had previously researched many sulfurtransferases could not be enrolled for specific reasons; as this field of research is still in its nascency, there are difficulties associated with securing funding and research positions. Additionally, many sulfurtransferases have not yet been studied. Therefore, it was impossible to completely cover the topic of sulfurtransferases in this book.

In my youth, one of my mentors taught me that scientists should aim for the following three things: (i) discover new things, (ii) deny falsely believed ideas, and (iii) establish new concepts. I have tried my best to achieve these aims; however, I have realized that these contributed researchers are far ahead of me when I contacted with these contributions.

I would like to thank all the researchers who have contributed to this book despite various unforeseen circumstances during the coronavirus pandemic and considering the current global status. I am also grateful for their deep understanding, given that this publication was delayed for a year. Lastly, I appreciate Prof. Gupta (general editor of this series) for giving me such a wonderful opportunity for editing this book.

8

New insight into the role of TST-derived hydrogen sulfide, a key regulator of mesenteric homeostasis in health and during chronic fructose intake

Oleh Revenko¹, Yaroslav Pavlovskiy¹, Iryna Kovalchuk¹, Maryana Savytska¹, Oksana Zayachkivska^{1,2}

¹PHYSIOLOGY DEPARTMENT OF DANYLO HALYTSKYY LVIV NATIONAL MEDICAL UNIVERSITY, LVIV, UKRAINE; ²PHYSIOLOGY DEPARTMENT OF SCHOOL OF MEDICINE, AMERICAN UNIVERSITY HEALTH SCIENCES, SIGNAL HILL, CA, UNITED STATES

Introduction

In recent decades, the role of hydrogen sulfide (H₂S), a gas mediator and signaling agent, has been studied in the regulation of intercellular signaling and intracellular signal transduction pathways with various physiological and pathophysiological effects in cells and tissues (Kimura, 2021). These cellular pathways are responsible for changes in metabolism, epigenetic, and cellular behavior. There are enzymatic and non-enzymatic pathways of endogenous hydrogen sulfide biosynthesis (Kaczor-Kamińska et al., 2021; Nagahara & Wróbel, 2020). Numerous studies have shown the diverse effects of H₂S on the physiological processes of neurotransmission in the brain, vascular smooth muscle relaxation in synergy with nitric oxide (NO), apoptosis, autophagy, angiogenesis, aging, inflammation, redox system, manifestations of oxidative stress, protein (Bronowicka-Adamska et al., 2019; Hazari et al., 2018; Kashfi, 2014; Lebeaupin et al., 2020; Szlęzak et al., 2021; Xia et al., 2020; Zhang et al., 2021b), as well as bioenergetic effects and systemic bioregulatory effects (Nagahara, 2020), including ANS (Kovalchuk et al., 2018).

Recently, it was shown that H_2S signaling is often dysregulated in different dysfunctions. The effect of H_2S on insulin secretion and protection of the heart, kidneys, and brain from ischemic damage, and hypoxia is known (Dilek et al., 2020; Gröger et al., 2019; Lignelli et al., 2021; Peleli et al., 2020; Powell et al., 2018; Zhang et al., 2021a). The

165