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INTRODUCTION
The hemoglobin molecule in erythrocytes can under-
go oxidation (autooxidation) or be oxidized by other 
factors, losing the ability to carry oxygen. The concen-
tration of methemoglobin (metHb) in a healthy person 
usually does not exceed 1% of the total amount of he-
moglobin. This level of methemoglobin is the result of 
a balance between methemoglobin formation and its 
recovery. In patients with diaphorase I (methemoglobin 
reductase) deficiency, about 3% of total hemoglobin is 
oxidized every day [l-3]. 

The reversibility of the binding of the ligands of the 
prosthetic group of hemoglobin is due to a protein 
component that forms a specific environment for 
heme, which in turn prevents its oxidation. However, 
subtle exchange of ligands (O2, 2,3-DFH, NO) would 
be impossible in the presence of rigid protection of the 

prostaglandin group. Ligands reach the active center 
of hemoglobin as a result of coordinated small-scale 
fluctuations of certain side groups of amino acid resi-
dues of the globule (β-93), which ensure the reduction 
of the internal molecular barrier and the formation of 
the trajectory of the ligand in the direction of heme [4]. 
It should be noted that in conditions of cessation of 
oxygen access from the external environment, oxyhe-
moglobin is capable of autooxidation due to oxygen, 
which is bound to heme iron [5]. 

The analysis of literature data allows us to conclude 
that the exact mechanism of spontaneous oxidation 
is unknown, and the explanations that exist today 
are quite contradictory [5]. None of the known works 
present data on the formation of reduced hemoglobin, 
which under certain conditions is a transitional form 
in the process of spontaneous autoxidation of its 

New view on the compatibility of hemoglobin function  
in the erythrocytes
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ABSTRACT
Aim: To study the process of hemoglobin oxidation and the enzymatic reactions associated with it.
Materials and Methods: Heparinized human blood (15 IU/ml) was obtained from the clinical department. The concentration of oxy- and methemoglobin, 
auto-oxidation of hemoglobin was determined spectrophotometrically spectrophotometrically. Autooxidation of hemoglobin was recorded spectrophotomet-
rically, and protein concentration was determined by the Lowry method. Monooxygenase activity of hemoglobin was also measured by the method described 
by Lowry spectrophotometrically. The concentration of O2 and H2O2 in the reaction media was determined on a biomicroanalyzer OR 210/3 (Redelkis).
Results: The obtained experimental data allow us to propose a mechanism of “spontaneous autooxidation” of oxyhemoglobin, which can be described by 
the following equations:
Hb2+O2  Hb3+ + O2

- (1)
Hb2+O2 + 2e - + 2H+  Hb3+ + H2O2 (2)
Hb2+O2 + 2e - + 2H+  Hb2+ + H2O2 (3)
Hb2+ + O2  Hb2+O2 (4)
Spectral characteristics of the process of “spontaneous auto-oxidation” indicate the formation of a metform of hemoglobin, the depletion of oxygen by the 
system was established, at pH 5.6, an increase in the monooxygenase activity of hemoglobin is observed 3-4 times compared to the physiological level.
Сonclusions: In addition to the main, previously known functions of hemoglobin (gas transport, peroxidase, monooxygenase), it catalyzes a two-electron 
oxidase reaction in which O2 is reduced to H2O2. This is confirmed by experimental data on the formation of one of the products of “spontaneous autoxidation” 
of oxyhemoglobin _ deoxyform at pH 5.6 _ 8.9.
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prosthetic group. In connection with the above, the 
study of the process of hemoglobin oxidation and the 
enzymatic reactions associated with it is relevant today.

AIM
The purpose of our research is to study the process of 
hemoglobin oxidation and the enzymatic reactions 
associated with it.

MATERIALS AND METHODS 
Experiments were conducted with human hemoglo-
bin, which was isolated from peripheral blood and 
purified [6, 7]. Heparinized human blood (15 IU/ml) 
was obtained from the clinical department of Danylo 
Halytskyi Lviv National Medical University. The concen-
tration of oxy- and methemoglobin was determined 
spectrophotometrically [8]. Autooxidation of hemo-
globin was recorded spectrophotometrically [2], and 
protein concentration was determined by the Lowry 
method. Monooxygenase activity of hemoglobin was 
also measured by the method described by Lowry 
spectrophotometrically [7]. The concentration of O2 

and H2O2 in the reaction media was determined on a 
biomicroanalyzer OR 210/3 (Redelkis).

RESULTS 
The detected products of the “spontaneous autoxida-
tion” reaction indicate the previously not fully under-
stood and unknown properties of hemoglobin. Thus, 
oxyhemoglobin is able to “spontaneously autoxidize” 
into metform through a reaction, the speed of which 
depends on the degree of its purification from low mo-
lecular weight compounds (Fig. 1A). With an increase 
in pH, that is, at physiological values, the kinetics of the 
rate of “spontaneous autoxidation” of oxyhemoglobin 
has a complex nature and is characterized by rates V1 
and V2 (Fig. 1B). For the first time, it was shown spectro-
photometrically that at physiological pH values, when 
“spontaneous autoxidation” occurs, in addition to met-
form, the deoxyform of hemoglobin is also formed. This 
is evidenced by the absorption spectra of hemoglobin 
after depressurization of the cuvettes (Fig. 2A, B). 

As can be seen, low-molecular compounds on the one 
hand activate “spontaneous auto-oxidation”, and on the 
other - protect oxyhemoglobin from oxidation to met-
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Fig. 1A. Kinetics of the spontaneous 
autooxidation of the human hemo-
globin.
Reaction medium (3,0 ml 0,1 М 
acetate buffer рН 5,6) contained 
0,001М EDTA and 50 – 60 μmoll oxy-
hemoglobin. 1. – oxyhemoglobin  not 
purified from low-molecular ligands; 
2 – oxyhemoglobin purified from 
low-molecular ligands; 3 – oxyhemo-
globin purified from low-molecular 
ligands and 2,3-DPG. Temperature 
of reaction medium - 37°С. n = 5, 
p< 0,05; 
B. Kinetics of the spontaneous auto-
oxidation of the human hemoglobin. 
Reaction medium (3,0 ml 0,05 М 
tris-HCl buffer рН 7,2) contained 
0,001М EDTA and 50 – 60 μmoll oxy-
hemoglobin. 1. – oxyhemoglobin  not 
purified from low-molecular ligands; 
2 – oxyhemoglobin purified from 
low-molecular ligands. Temperature 
of reaction medium - 37°С. n = 5, 
p< 0,05.
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form. Therefore, low-molecular-weight compounds at 
physiological pH values take a direct part in stabilizing 
the conformational state of the hemoglobin molecule, 
that is, stimulating its “spontaneous auto-oxidation”, 
while not changing the oxidation-reduction state of 
iron in the heme structure. This is not observed when 
pH decreases, in particular at pH 5.6. 

In addition to the already known, such a protective 
system is the ingredient low-molecular composition 
of the erythrocyte. Thus, at physiological pH, complete 
oxidation of oxyhemoglobin to metform does not occur, 
and after depressurization of the cuvettes, oxygenation 
of deoxyhemoglobin is observed. Hemoglobin, which 
contains low-molecular-weight compounds, is oxygen-
ated faster compared to purified hemoglobin (Fig. 2A). 

The obtained experimental data, as well as informa-
tion from the literature [8], allow us to propose a mecha-
nism of “spontaneous autoxidation” of oxyhemoglobin, 
which can be described by the following equations:

Hb2+O2  Hb3+ + O2
- (1)

Hb2+O2 + 2e - + 2H+  Hb3+ + H2O2 (2)
Hb2+O2 + 2e - + 2H+  Hb2+ + H2O2 (3)
Hb2+ + O2  Hb2+O2 (4)

During hemolysis of erythrocytes (extracellular) 
hemoglobin can enter the bloodstream, where the 
concentration of antioxidant enzymes is low, and act 
as a source of iron ions, which is nоt active in oxyhemo-
globin. Hydrogen peroxide, hypochlorous acid, organic 

lipid hydroperoxides can modify oxyhemoglobin with 
the formation of more reactive compounds _ feryl and 
perferrylhemoglobin [23]. Hemoglobin modification 
products by oxidants are able to cause peroxidation of 
lipids, blood lipoproteins, lipids of biomembranes [24] 
and other important biomolecules of the body [25], 
thus being the cause of the occurrence and develop-
ment of various diseases.

Mechanisms of cellular and extracellular hemoglobin 
oxidation, as well as the influence of factors on cellular 
and extracellular “spontaneous autooxidation” of he-
moglobin are presented in Fig 3 and Fig 4.

At a pH value of 5.6, reactions 1-4 occur, because, 
firstly, the spectral characteristics of the process of 
“spontaneous autoxidation” indicate the formation 
of the metform of hemoglobin (reactions 1, 2), and 
secondly, it is established that the system is depleted 
of oxygen (reactions 3, 4), thirdly, at this pH there is an 
increase in the monooxygenase activity of hemoglobin 
by 3-4 times compared to the physiological level.

DISCUSSION
Blood hemoglobin is always at risk of oxidation to met-
hemoglobin, in which the molecule retains its original 
structure but can no longer carry oxygen. 

It is believed that part of the oxygenated hemoglobin 
HbFe2+O2 is located in the form of HbFe3+O2-. [4]: 

Fig. 2. A. Specters of absorbtion of hemoglobin with low-molecular ligands. Spectra were obtained after 1 _ 24 hours, 2 _ 48 hours, 3 _ 72 hours;  
4 _ 96 hours, 5 _ 120 hours, 6 _ 144 hours; 
B. Specters of absorbtion of hemoglobin purified from low-molecular ligands. Spectra were obtained after 1 _ 24 hours, 2 _ 48 hours, 3 _ 72 hours;  
4 _ 96 hours, 5 _ 120 hours, 6 _ 144 hours

A B
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HbFe2+O2 ↔HbFe3+ O2-.(1)
(the initial stage of autoxidation corresponds to the 

dissociation of this form into methemoglobin (HbFe3+) 
and O2- (superoxide anion):

HbFe3+O2
-.   HbFe3+ + O2

-. (2) [1, 4, 5]
formed by O2-. attacks the new oxyhemoglobin mol-

ecule in the presence of H+ ions (low pH):
HbFe2+O2 + O2

-. + 2Н+   HbFe3+ + H2O2 + O2 (3)
The resulting H2O2 [3] attacks the new oxyhemoglobin 

molecule:
HbFe2+O2 + H2O2  HbFe3+ ОН. + ОН- + О2 (4)
OH the radical that is formed from oxyhemoglobin 

can then react with other oxyhemoglobin molecules:
HbFe2+O2 + ОН.   HbFe3+ +2ОН- + О2 (5)
Peroxides react with oxyhemoglobin HbFe+O2 or 

methemoglobin with formation of protein-associated 
oxidant type (HbFe4+) and dangerous peroxide radicals 
[6, 7, 8-13].

HbFe2+O2  + Н2О2  HbFe4+ОН + ОН. + О2 with for-
mation  О2 (5)

HbFe3+ + Н2О2 +Н+  HbFe4+ОН + Н2О (6)
In erythrocytes, this highly toxic protein radical reacts 

with HbFe2+O2:
HbFe4+ + HbFe2+O2    2HbFe3+ + О2 (7)
The formed methemoglobin is restored (reduced) by 

methemoglobin reductase [14-18].
In addition to self-oxidation, hemoglobin can be oxi-

dized by the superoxide radical (O2-), which is constantly 
generated in erythrocytes [l] and in all aerobic cells [16]:

О2 + e-   О2
-.-.(8)

This radical can affect the oxidation of oxyhemoglo-
bin to methemoglobin [4].

Hemoglobin can be oxidized by nitric oxide, which 
is produced by endothelial cells and released into the 

Fig.3 

 

 

Fig. 3. Factors influencing cellular and acellular hemoglobin oxidation. The 
schematic represents reductive processes of (A) cellular and (B) extra-cel-
lular hemoglobin. In (A) the oxidation followed by enzymatic and non 
enzymatic processes in the red blood  cell lead to minimal accumulation of 
HbFe3–and HbFe4+. The physical barrier of the red cell membrane (red circle) 
limits NO and H2O2 mediated oxidative processes. In (B) when the protective 
mechanisms of the red blood cell are eliminated such as is the case with 
HBOCs or when Hb is released,  the influences of enzymatic/non-enzymatic 
reductive processes are lost allowing for an unknown amount of oxidized 
hemoglobin accumulation. Moreover each arrow indicates processes, which 
may directly lead to the accumulation of oxidized Hb.

Fig. 4. Oxidative damage of erythrocytes during 
storage and conditions of pathogen inactivation.
Freshly stored RBCs in a standard blood bag 
undergo very little oxidation apart from normal 
spontaneous (autoxidation) reactions of Hb, 
resulting in little metHb accumulation (left).
Reductive and antioxidant enzymes/proteins 
such as NADPH reductase and GSH maintain 
metHb to a minimum. Under prolonged storage 
conditions or when RBCs are exposed to UV light, 
Hb oxidative side reactions are increased, mainly 
Hb’s own pseudoperoxidative pathways (right). 
These pathways result in the production of ferryl 
Hb (HbFe4+) which attacks other biological targets 
including band 3, resulting in band 3 clustering. 
Ferryl Hb crosslinks the major RBC membranes 
band 3 into clusters and the ultimate release of 
Hb-laden microparticles (MPs), based on with 
modifications.
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bloodstream, and can enter the erythrocyte. Thus, 
hemoglobin will probably be oxidized as follows [4]:

2HbFe2+O2  + 2.NO + e-  2HbFe3+ + 2NO2
. +O2

-. (9)
or by the equation:
2.NO + O2  2.NО2 (12) [24]:
HbFe2+O2 + .NO2  HbFe3+ + NO2

- + О2 (10)
As a result of the reaction, the nitrite anion NO2- is 

formed, which reacts with a new molecule of oxyhe-
moglobin in an acidic environment:

HbFe2+O2 + 2H+ + NO2
-   HbFe3+  + .NO2 + Н2О2 (11) [19]

or by the equation:
HbFe2+O2 + .NO  HbFe3+ + NO3

- (15) [20].
H2O2 and O2- are formed. can react with a new mol-

ecule of oxyhemoglobin according to reactions 3-4. 
Hemoglobin in erythrocytes or in blood plasma would 
not perform the function of oxygen  transfer if there was 
no enzymatic system to inhibit its oxidation reactions.

Reactions limiting hemoglobin oxidation [21].
Since superoxide anion and hydrogen peroxide are 

naturally formed in the body, there are enzyme systems 
that protect hemoglobin from oxidation: superoxide 
dismutase to neutralize superoxide anion (O2

-), gluta-
thione peroxidase and catalase to split H2O2 [5, 13, 22]. 
The activity of these enzymes is high in erythrocytes 
and low in blood plasma [23]. 

Erythrocytes contain enzymatic or non-enzymatic 
systems that restore the hemoglobin molecule to its 
active form and physiological function, keeping the 
level of circulating methemoglobin below 1%. Meth-
hemoglobin recovery pathways are mainly enzymatic 
and associated with erythrocyte glycolysis (Table 1).

Superoxide dismutase (SOD) catalyzes the reaction:
Superoxide dismutase
2O2

-.+ 2H+                H2O2 .+ O2 (12)
Low concentrations of H2O2 are mainly decomposed 

by glutathione peroxidase [18, 24]:
Glutationperoxidase
2GSH + Н2О2               GSSG+2H2O (13)
Then, as the decomposition of high concentrations 

of H2O2 is catalyzed by catalase:

Catalase
Н2О2                         H2O + ½ О2 (14)
These reactions depend mainly on hydrogen sources, 

such as NAD and NADPH [23, 26, 27]. 
An important supplier of hydrogen is the NAD-de-

pendent metabolic pathway associated with anaerobic 
glycolysis. NAD is reduced to NADH, which is then used 
by methemoglobin reductase (diaphorase I, NADH 
dehydrogenase, or cytochrome b5 reductase [25, 27].

Cytochrome b5-reductase
NADH + Cytb5Fe3+  NAD+ + Cytb5Fe2+ (15)
Cytb5Fe2+ + HbFe3+  Cytb5Fe3+ + HbFe2+ (16)
One molecule of cytochrome b5 can bind to one sub-

unit of methemoglobin, mainly through lysine and/or 
arginine residues [27], and transfer the electron needed 
to reduce iron to the divalent state.

Another supplier of hydrogen is NADP, the main place 
of its formation is the pentose phosphate pathway of 
glucose metabolism. NADPH is reduced to NADPH, 
which itself reduces methemoglobin to hemoglobin 
under the action of another methemoglobin reductase, 
NADPH-flavin reductase, diaphorase II or NADPH-dehy-
drogenase [28, 29]:

NADPH- reductase
NADPH + flavin (oxidized form)  NADP+ + dihydro-

flavin (reduced form) (22)
dihydroflavin + Fe3+  flavin + Fe2+  (17).
In a non-enzymatic way, methemoglobin is reduced 

to hemoglobin as a result of the reaction with ascorbic 
acid or reduced glutathione (Table 1).

Ascorbic acid can penetrate the erythrocyte mem-
brane and reduce the level of methemoglobin by 
transferring one electron

At the same time, ascorbic acid is oxidized to dehy-
droascorbic acid, which is then reduced by glutathione 
or directly by dehydroascorbate reductase [30, 31]:

So, the process of auto-oxidation of hemoglobin can 
be represented by the total equation:

4 (HbFe2+ O2) + 2Н+  4HbFe3+ +2ОН- + 3О2  with 
formation O2

-. , ОН., Н2О2 (6)

Table 1. Antioxidant enzymes and concentrations of reducing agents in human plasma and erythrocytes [17].
Concentration Plasma Erythrocytes

Antioxidant Enzymes (U ml-1) (U-10-10 сells)

Superoxide dismutase 5-20 550-800

Catalase ? 3800-5400

(GSH) peroxydase 0.4 7.8 -10.6

(GSSG) reductase 0.0 2.7-3.7

Reducing Agents µM µM

Glutathione (GSH) 5 2.5 l03 to 10 l03

Ascorbic acid 45 to 85 40 to 70
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CONCLUSIONS
Thus, based on the above data, it can be concluded that 
in addition to the main, previously known functions of 
hemoglobin (gas transport, peroxidase, monooxygenase), 
it catalyzes a two-electron oxidase reaction in which O2 is 
reduced to H2O2.  The validity of this position is confirmed 
by experimental data on the formation of one of the prod-
ucts of “spontaneous autooxidation” of oxyhemoglobin 
- deoxyform - THIS is not oxidation of hemoglobin, iron 
remains +2 as well as the kinetic characteristics of this 
process in the range of pH 5.6 _8.9. It has been shown that 
the formation of hemoglobin complexes with low-molec-
ular-weight compounds that are formed in the erythrocyte 
contributes to the preservation of its functional activity. 
This property acquires a special physiological significance 
in conditions of low pO2 values, when the probability of 
loss of the gas transport function of hemoglobin increases 
sharply, as a result of possible oxidation of the iron por-
phyrin structure. 

The obtained results can be used for the objective assess-
ment of oxygen binding properties of hemoglobin in pa-
tients with distress, destructive processes and intoxication.

Thus, gemoglobin (Hb) within red blood cells (RBC) 
is protected from oxidative processes by efficient en-
zymatic machineries such as cytochrome b5, or flavin, 
coupled with NADH-dependant or NADPH-dependent 
methemoglobin reductases, reduced glutathione (GSH) 
and small molecule reductants which include ascorbic 
acid and uric acid. Thus when small amounts of Hb are 
oxidized to ferric (HbFe3+) and ferryl (HbFe4+) forms, 
reduction to the oxygen carrying ferrous (HbFe2+O2) 
form occurs rapidly to restore oxygen carrying capabil-
ity and prevent cellular injury which may be triggered 
by these oxidation intermediates (Fig. 3).Moreover, the 
RBC provides a functional protective barrier to excessive 
nitrosative agents such as endothelial-derived nitric 
oxide (NO) and peroxidative agents such as hydrogen 
peroxide (H2O2).

According to literature data, the physiological ox-
idation of hemoglobin is characterized by a certain 
sequence of autoxidation and oxidation reactions, as 
well as the presence of factors in erythrocytes and blood 
plasma that can reduce the level of methemoglobin or 
prevent its formation.
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