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A methodology for researching dynamic processes of one-dimensional systems with dis-
tributed parameters that are characterized by longitudinal component of motion velocity
and are under the effect of periodic impulse forces has been developed. The boundary
problem for the generalized non-linear differential Klein–Gordon equation is the math-
ematical model of dynamics of the systems under study in Euler variables. Its specific
feature is that the unexcited analogue does not allow applying the known classical Fourier
and D’Alembert methods for building a solution. Non-regularity of the right part for the
excited non-linear analogue is another problem.
This study shows that the dynamic process of the respective unexcited motion can be
treated as overlapping of the direct and reflected waves of different lengths but equal
frequencies. Analytical dependencies have been obtained for describing the aforesaid pa-
rameters of the waves. They show that the dynamic process in such mechanical systems
depends not only on their main physical and mechanical parameters and boundary con-
ditions, but also on the longitudinal motion velocity (relative momentum). As relative
momentum increases, the frequency of the process decreases.
To describe excited motion, we use the principle of single frequency of oscillations in
non-linear systems with concentrated masses and distributed parameters as well as reg-
ularization of periodic impulse excitations. The main idea of asymptotic integration of
systems with small non-linearity into the class of dynamic systems under study has been
generalized. A standard equation for the resonance and non-resonance cases has been ob-
tained. It has been established that for the first approximation, in the non-resonance case,
impulse excitation affects only the partial change of the form of oscillations. Resonance
processes are possible at a specific relation between the impulse excitation period, the mo-
tion velocity of the medium, and physical-mechanical features of the body. The amplitude
of transition through resonance becomes higher when impulse actions are applied closer to
the middle of the body. As the longitudinal motion velocity increases, it initially increases
and then decreases.
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1. Problem statement and urgency

Research into dynamic processes of elastic or flexible bodies characterized by longitudinal motion
velocity of elastic or flexible bodies along which a distributed load is moving started almost a hundred
years ago. O. M. Krylov and S. P. Tymoshenko [1] tried to investigate them while studying the effect
of moving loads on an elastic beam. The aforesaid problems promoted research into the oscillations
of elastic bodies under the effect of longitudinally moving distributed load [2]. As a result of [3],
scientists focused on linear oscillatory processes of elastic bodies under the effect of moving distributed
loads. However, the linear theory does not give an answer to very important questions regarding
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the dynamics of real (non-linear) systems. Problems about the effect of non-linear characteristics of
elastic bodies affected by moving loads were considered in [4] and other papers. The aforesaid paper
shows that linear statement of problems about the effect of moving loads on elastic bodies has limited
application and leads to significant inaccuracies at high velocities of the moving loads. In terms of
statement, such problems are close to the problems about transverse or longitudinal oscillations of
one-dimensional models of elastic bodies characterized by constant longitudinal motion velocity or
flexible bodies along which a continuous medium flow is moving. Their mathematical models in Euler
variables are non-linear boundary problems for the generalized Klein–Gordon equation [5] that contains
a mixed derivative of the line and time variables. The unexcited analogue of this equation does not
allow using classical methods of integrating linear equations with partial derivatives. Despite this, a
methodology for analytical research into dynamic processes of systems whose process mathematical
models are boundary problems for the generalized non-linear Klein–Gordon equation under a periodic
effect of impulse forces has been developed in this study.

2. Literature overview

Analytical methods of investigation of dynamic processes of non-linear systems with distributed pa-
rameters are best described in [6] for the case when their unexcited analogues allow using classical
methods of variable separation for integration. The main ideas of the aforesaid method for the case
of single-frequency oscillations in combination with periodical Ateb–functions [7, 8] are common in [9]
for strongly non-linear systems. Several specific features of dynamic processes in strongly non-linear
systems were established that are not characteristic of linear of quasi-linear systems. One of them
is the fact that the frequency of self-oscillations depends on the amplitude, and thus specificities of
resonance processes [10, 11]. Another important class of non-linear one-dimensional systems with dis-
tributed parameters is made up by those systems, the unexcited (linear) analogues of which do not
allow using the classical Fourier and D’Alembert methods for integration. They primarily include
systems characterized by longitudinal motion velocity. Mathematical models of such systems contain
a mixed derivative of the linear and time variables for the cases of longitudinal or transverse oscilla-
tions. Different approaches to approximate investigation of such systems were considered in [12–16].
Thus, in [12], for such linear models it is proposed to search for solutions in the form of multiple
trigonometric series that have a special form, which leads to the emergence of secular addends at the
time of expansion of the unknown flexure function of a moving flexible body. A similar approach to
building a solution for linear models of the aforesaid class of systems in conditions of a time-variable
medium motion velocity was developed in [13, 14]. They propose to search for a solution in the form
of a series according to a system of functions that is full and orthonormal. These features ensure au-
tomatic fulfilment of boundary conditions. As far as unknown coefficients of expansion are concerned,
which are functions from time, a system of non-linear regular differential equations with coefficients
periodically changeable in time was developed to find them. Using methods of number simulation for
various approximations, bifurcation conditions of solutions were obtained. In paper [15], the main idea
of [13] was developed for the case of bending oscillations of a non-linearly flexible body characterized
by longitudinal motion velocity. A similar approach is considered for the non-linear model of a flex-
ible body characterized by a time-variable motion velocity [16]. Investigations of non-linear systems
of autonomous and non-autonomous types characterized by a constant motion velocity gained a new
impulse in [17, 18]. Using the main ideas of the wave theory of motion, they show that the dynamic
process of the class of systems under study can be regarded as overlapping waves with different lengths
but with equal frequencies. The main ideas of the aforesaid papers are used in [19–23] for solving many
important practical problems. Note that in case of impossibility to apply analytical approaches to the
aforesaid class of problems, methods that combine qualitative and quantitative studies of oscillating
systems have been widely used in recent years [24].

In this paper, asymptotic methods and the wave theory of motion are combined in an effective
methodology for analytical studies that allowed expanding the class of problems of the non-linear
oscillations theory. Oscillating systems characterized by longitudinal motion velocity under the effect
of periodical impulse forces are studied.
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3. Mathematical model of non-linear oscillations of bodies characterized by longitudinal
motion velocity under the effect of impulse forces

It is known [17] that oscillations of elastic or flexible bodies characterized by a constant longitudinal
motion velocity V are described by the following differential equation

utt + 2V uxt −
(
α2 − V 2

)
uxx = ε f(u, ux, ut, uxx), (1)

where u(x, t) is displacement of body cross section with the Euler coordinate x at a random moment
of time. The function f(u, ux, ut, uxx) is analytical approximation of the multitude of non-linear forces
and the small parameter ε points at a small magnitude of their maximum value compared to the
maximum magnitude of the addend (α2−V 2)uxx. In equation (1): α2 = E

m
, E is modulus of elasticity,

m is mass per unit length of elastic body – for longitudinal oscillations of elastic body or α2 = T
ρ
, T is

tension force, ρ is mass per unit length of elastic element — for transverse oscillations of elastic body.
In case periodical small impulse force with period τ and a force proportional to the displacement of its
cross section are applied additionally to the body in the point with the coordinate x0, equation (1) is
transformed into the following form

utt+2V uxt−
(
α2 − V 2

)
uxx+βu = εf(u, ux, ut, uxx)+εδ(x−x0)

∑

i=1

δ(t − 2(i − 1)τ)gi(u, ux, ut), (2)

where ε gi(u(x0, (i− 1)τ), ux(x0, (i− 1)τ), ut(x0, (i− 1)τ)) is magnitude of the impulse force that takes
effect at the moments 2iτ , δ(. . .) is Dirac delta function [25,26]. We shall call this equation ‘generalized
non-linear Klein–Gordon equation’. At V = 0, ε = 0, it transforms into the classical Klein–Gordon
equation. For simplicity, we consider classical boundary conditions of the first kind for equation (2)

u(0, t) = u(l, t) = 0, (3)

where l > 0 is constant. The problem lies in finding an analytical solution of the boundary prob-
lem (2), (3).

4. Building asymptotic approximation of the boundary problem

The specific feature of the problem (2), (3) is the fact that unexcited (ε = 0) equation (2) does not
allow classical methods of equation integration with partial derivatives and its right part is a discon-
tinuous function. However, the maximum value of the right part of equation (2) is a small magnitude
(proportional to the small parameter), and this makes ground for using general ideas of excitement
methods while building a solution [7]. These methods are most effective in practical application when
it is possible to build a solution in a closed form for the unexcited analogue of the respective boundary
problem.

4.1. Single-frequency oscillations of unexcited (ε = 0) equation at boundary conditions of the
first kind

Let us show that for the aforesaid case, a single-frequency dynamic process is described by the following
dependence

uk(x, t) = ak (cos(κkx+ ωkt+ φk)− cos(χkx− ωkt− φk)) . (4)

It can be treated as overlapping of two waves with different wave numbers κk and χk, but with equal
frequencies ωk. As far as parameters ak and φk are concerned, they are constant for the unexcited case,
and for the excited case, they are time-variable, and the laws of their change are defined by the right
side of equation (2). Note that representation (4) does not contradict the main idea of the D’Alembert
method [26] of building solutions of equations with partial derivatives. For determining the magnitudes
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of wave numbers and of process frequency from the unexcited equation, which corresponds to (2), we
get the following dispersion relations:

ω2
k + 2ωkκkV −

(
α2 − V 2

)
κ2k − β = 0,

ω2
k + 2ωkχkV −

(
α2 − V 2

)
χ2
k − β = 0.

(5)

The relations (4), (5) together with the boundary conditions (3) determine parameters of the process
of unexcited motion by the following dependencies

κk =
kπ

2l
+

V

αl

√
k2π2 +

l2β

α2 − V 2
, χk =

kπ

2l
− V

αl

√
k2π2 +

l2β

α2 − V 2
,

ωk =
α2 − V 2

αl

√
k2π2 +

l2β

α2 − V 2
, k = 1, 2, . . . . (6)

They show that even constant motion velocity causes change in the form and frequency of its self-
oscillations. It is especially important while researching the effect of external periodic excitations on
the process, particularly in case of studying resonance phenomena. Fig. 1 shows the dependence of
the main (k = 1) frequency of self-oscillations on longitudinal motion velocity at different values of
parameter β at l = 2m; α = 18ms−1.
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Fig. 1. Dependence of the main frequency mode of self-oscillations of
the unexcited boundary problem (2), (3) on parameter V .

It should be noted that single-frequency approximations both for unexcited and excited problems
exist when the initial state of the system coincides with or is approximate to one of the forms of normal
oscillations of an unexcited system, that is to

uk(x, 0) = ak

(
cos

((
kπ

2l
+

V

αl

√
k2π2 +

l2β

α2 − V 2

)
x+ φk

)

− cos

((
kπ

2l
− V

αl

√
k2π2 +

l2β

α2 − V 2

)
x− φk

))
.

If this condition is not fulfilled, a multi-frequency process will take place in the system. Basing on the
linearity of the unexcited boundary problem under study, we conclude that a multi-frequency process
in it is described by the following dependence:

uk(x, t) =
∑

k=1

ak (cos (κkx+ ωkt+ φk)− cos (χkx− ωkt− φk)) .

It is more complicated in terms of description and can be subject to separate investigation.
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4.2. Asymptotic approximation of boundary problem solution

Having the description of a single-frequency process for the unexcited case, let us move to the study of
the effect of a small excitation (non-linear and impulse forces) on the equation solution. The presence
of even small non-linear and impulse forces in the right side of equation (2) causes qualitative and
quantitative changes in the process compared to its unexcited analogy (ε = 0). In many cases, they
have a dramatic effect on the stability of the dynamic process in general. Thus, in the mode of single-
frequency oscillations, amplitude and frequency (period) of the dynamic process will be, generally
speaking, time-variable magnitudes that transit to single-frequency modes at ε → 0. Before progressing
to solving the excited boundary problem for the non-linear generalized Klein–Gordon equation with
an impulse right part, let us transform a little the addends of the right part that express the time
component of the impulse action. It follows from the main features of the δ(. . .)-functions that the
addends of the right part of the relation (3) expressing the aforesaid component of the impulse action
can be represented in the following form without damage to accuracy [11]:

δ(x− x0)
∑

i=1

gi(u, ut, ux)δ(t − 2(i − 1)τ) = δ(x− x0)
∑

i=1

gsi(u, ut, ux) cos θδ

(
θ

µ
− 2(i− 1)π

µ

)
, (7)

where θ = µt, µ = π
τ
. Parameter θ will be called ‘external periodical excitation phase’ fur-

ther. Delta-function from the linear variable δ(x − x0), considering fullness and orthonormality
on the interval [0, l] of the system of functions {Xs(x)} =

{
sin sπ

l
x
}
, is represented in the form

δ(x − x0) =
2
l

∑
s=1 sin

sπ
l
x0 sin

sπ
l
x. Therefore, we will search for the solution for the Klein–Gordon

equation for the first approximation in the following form:

u(x, t) = a (cos(κx+ ϕ) − cos(χx− ϕ)) + εU1(a, x, ϕ, θ), (8)

where ϕ = ωt+φ, U1(a, x, ϕ, θ) is unknown 2π-periodical by ϕ and θ function that considers the effect
of nonlinear and impulse forces on the process dynamics. The function must satisfy the boundary
conditions that follow from (3), that is

U1(a, x, ϕ, θ)|x=0 = U1(a, x, ϕ, θ)|x=l = 0. (9)

Besides, as already mentioned, small nonlinear forces and impulse excitation not only partially change
the form of the process (the functions U1(a, x, ϕ, θ) take it into account), but also cause the change of
amplitude and frequency (period) of system oscillations. There are approaches and hypotheses about
the laws of change of these characteristics of system motion. For the so-called ‘short systems’, it is
considered that the amplitude of the wave process (regardless of the nature of forces) changes only in
time. Systems are called ‘short systems’ if the length of the propagating wave is commensurate with
the length of the system (to be more precise, with the l parameter). This approach is considered in [6],
for example. A different approach, which is used for the so-called ‘long systems’, states that non-
linear systems cause simultaneous change of the main characteristics of the process both in time and
longitudinally (both variables are of equal importance, refer, for instance, to [27]). Note that boundary
conditions are not considered for ‘long systems’ in these papers. Besides, in relation (7) and below,
index k that points to the form of ‘dynamic equilibrium’ is omitted for the sake of briefness. Besides,
the generalized Klein–Gordon equation in the form (2) at corresponding boundary conditions describes
not only the dynamics of elastic or flexible bodies characterized by longitudinal motion velocity, but
also the dynamics of elastic or flexible bodies, along which a continuous flow of uniform medium is
moving. Therefore, let us consider that nonlinear and impulse forces cause only time change of the
amplitude and frequency of the dynamic process. Because impulse action is periodic in nature, both
resonance oscillations (p2π

ω
≈ qτ , p, q are mutually simple numbers) and non-resonance oscillations

(p2π
ω

6= qτ) are possible for the oscillations of a longitudinally moving body under study.
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4.2.1. Non-resonance oscillations of bodies, whose motion is described by the boundary problem
for the generalized non-linear Klein–Gordon equation

It is known [6] that in the non-resonance case, small external periodic action on quasi-linear oscillating
systems causes partial change of the form of oscillations only, but non-linear forces (in the general
case) — time change of the amplitude and the frequency of oscillations. Therefore, the laws of change
of these parameters shall be described by the following regular differential equations

da

dt
= εA1(a),

dϕ

dt
= ω + εB1(a) (10)

with the unknown functions A1(a), B1(a). The problem consists in finding these functions in a way
that solution representation of equation (3) in the form (8) considering (6) should satisfy the original
equation (2) with the accuracy considered. Omitting intermediary calculations connected with differ-
entiating the dependence (7), we receive the following differential equation for finding connection with
the unknown functions U1(a, x, ϕ, θ), A1(a), B1(a):

L(U) = f1(a, x, ϕ) +
2

l

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

gi(a, x, ϕ) cos θδ

(
θ

µ
− 2(i− 1)π

µ

)

+ 2 [(ω + κV ) sin(κx+ ϕ) + (ω − χV ) sin(κx− ϕ)]A1(a)

+ 2a [(ω + κV ) cos(κx+ ϕ)− (ω − χV ) cos(κx− ϕ)]B1(a), (11)

where

L(U) = ω2 ∂
2U1(a, x, ϕ, θ)

∂ϕ2
+

(
2π

τ

)2
∂2U1(a, x, ϕ, θ)

∂θ2
+ 2V

2π

τ

∂2U1(a, x, ϕ, θ)

∂x∂ϕ
+ 2V

2π

τ

∂2U1(a, x, ϕ, θ)

∂x∂θ

− (α2 − V 2)
∂2U1(a, x, ϕ, θ)

∂x2
+ γU1(a, x, ϕ, θ),

f1(a, x, ϕ) = f(u, ux, ut, uxx)∣∣
∣

∣

∣

∣

∣

∣

u=a(cos(κx+ϕ)−cos(κx−ϕ)),
ux=−a(κ sin(κx+ϕ)−χ sin(κx−ϕ)),
ut=−aκ(sin(κx+ϕ)+sin(κx−ϕ)),

uxx=−a(κ2 cos(κx+ϕ)−χ2 cos(κx−ϕ)),

gi(a, x, ϕ) = gi(u, ut, ux)∣∣
∣

∣

∣

∣

u=a(cos(κx+ϕ)−cos(κx−ϕ)),
ux=−a(κ sin(κx+ϕ)−χ sin(χx−ϕ)),
ut=−aω(sin(κx+ϕ)+sin(χx−ϕ)).

We fail to clearly determine the unknown functions A1(a), B1(a) from equation (11). Therefore, let
us impose an additional condition

∫ 2π
0 U1(a, x, ϕ, θ)

{ cosϕ
sinϕ

}
dϕ = 0 on the function U1(a, x, ϕ, θ). This

condition equals selecting the amplitudes of their first modes for the amplitudes of the direct wave and
the reflected wave. By making simple trigonometric transformations of coefficients of the right part of
the relation (11) at A1(a) and B1(a) considering the aforesaid condition, we obtain the following:

ρ(x)A1(a) + ah(x)B1(a) = − ε

2π

∫ 2π

0
f1(a, x, ϕ) cosϕdϕ

− ε

2πl

∫ 2π

0

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

gi(a, x, ϕ) cos θδ

(
θ

Ω
− 2(i− 1)π

Ω

)
cosϕdϕdθ

h(x)A1(a)− a ρ(x)B1(a) = − ε

2π

∫ 2π

0
f1(a, x, ϕ) cosϕdϕ

− ε

2(π)2l

∫ 2π

0

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

gi(a, x, ϕ) cos θδ

(
θ

Ω
− 2(i− 1)π

Ω

)
sinϕdϕdθ, (12)

where ρ(x) = (ω + κV ) sinκx+ (ω − κV ) sinχx, h(x) = (ω + κV ) cos κx− (ω − χV ) cos χx.
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As noted above, this study is focused on ‘short systems’, that is the laws of change of the
parametersa, ϕ do not depend on the linear variable. This makes ground for the procedure of aver-
aging for the case gi(a, x, ϕ) = F0 (the magnitudes of all impulse excitations are equal):

A1(a) =
ε

2πl [(ω + κV )2 + (ω − χV )2]

∫ l

0

∫ 2π

0

{
f1(a, x, ϕ)

− F0

2πl

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x cos θ δ

(
θ

Ω
− 2(i− 1)π

Ω

)
dθ

}{
ρ(x) cosϕ+ h(x) sinϕ

}
dϕdx,

B1(a) =
ε

a2πl [(ω + κV )2 + (ω − χV )2]

∫ l

0

∫ 2π

0

{
f1(a, x, ϕ)

− F0

2πl

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x cos θ δ

(
θ

µ
− 2(i− 1)π

µ

)
dθ

}{
ρ(x) sinϕ− h(x) cosϕ

}
dϕdx, (13)

It is easy to prove that for the impulse excitation under consideration, integrals in the rela-
tion (13), which take into consideration the effect of periodic impulse excitation, equal zero, because∫ 2π
0

{ cosϕ
sinϕ

}
dϕ = 0. This allows stating that small periodic actions for the first approximation do

not affect the laws of time change of the main wave parameters, but partially affect the change of
form of the waves. To define the law of the wave form change, it is possible to use expansions of the
unknown function U1(a, x, ϕ) and the right part of the equation in multiple Fourier series for the first
approximation

U1(a, x, ϕ, θ) =
∑

s 6=1

∑

n 6=1

∑

m

U1snm(a)Xm(x) exp (i(nϕ+mθ))

and carry out the procedure of equalization of coefficients at equal harmonics. Therefore, for the
first approximation, the non-resonance solution of the boundary problem for the excited generalized
non-linear Klein–Gordon equation is described by the relation (4), in which parameters a and ϕ are
connected by regular differential equations

da

dt
= εA1(a) =

ε

2πl [(ω + κV )2 + (ω − χV )2]

∫ l

0

∫ 2π

0
f1(a, x, ϕ)

{
ρ(x) cosϕ+ h(x) sinϕ

}
dϕdx,

dϕ

dt
− ω = εB1(a) =

ε

a2πl [(ω + κV )2 + (ω − χV )2]

∫ l

0

∫ 2π

0
f1(a, x, ϕ)

{
ρ(x) sinϕ− h(x) cosϕ

}
dϕdx.

(14)
Naturally, the relations (14) at β = 0, V = 0 transform into known values for the quasi-linear wave
equation.

4.2.2. Resonance oscillations of bodies, whose motion is described by the boundary problem for
the generalized non-linear Klein–Gordon equation

Cases of resonance oscillations are much more complicated in the study of oscillation processes of
systems characterized by constant longitudinal motion velocity. They are observed when p2π

ω
≈ qτ .

Below, we shall consider only the case of constant impulse excitation magnitudes. It is common
knowledge that for non-linear systems with resonance, the laws amplitude and frequency change in
the dynamic process depend considerably on the phase difference between self-and forced oscillations.
For the case under consideration, this is the parameter γ = ϕ − p

q
θ. Therefore, the laws of change of

the main wave parameters in representation (8) have a somewhat more complicated form than in the
non-resonance case, namely:

da

dt
= εA1(a, γ),

dγ

dt
= ω − p

q

2π

τ
+ εB1(a, γ). (15)
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The problem consists in defining such functions A1(a, γ), B1(a, γ) that asymptotic representation of (8)
should satisfy equation (3) with the accuracy considered, if we substitute functions of time defined in
the equations (15) instead of a and ϕ. Like in the non-resonance case, the definition of unknown
functions is related to the equation:

L̄(U1) = f1(a, x, ϕ, θ) +
F0

l

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

cos θδ

(
θ

µ
− 2(i− 1)π

µ

)
+ ρ̃(x, ϕ)Ai(a, γ)

+ ah̃(x, ϕ)Bi(a, γ) +

[
ρ̃1(x, ϕ)

∂A1(a, γ)

∂γ
+ ah̃1(x, ϕ)

∂B1(a, γ)

∂γ

](
ω − p

q
Ω

)
, (16)

where ρ̃(x, ϕ) = 2 [(ω + κV ) sin(κx+ ϕ) + (ω − χV ) sin(χx− ϕ)],
h̃(x, ϕ) = 2 [(ω + κV ) cos(κx+ ϕ)− (ω − χV ) cos(χx− ϕ)], ρ̃1(x, ϕ) = −(cos(κx+ ϕ)− cos(χx− ϕ)),

h̃1(x, ϕ) = sin(κx + ϕ) + sin(χx− ϕ). Imposing the conditions of absence of the first harmonics ϕ on
the function U1(a, x, ϕ, θ), a system of equations is obtained for relating the unknown functions:

ρ(x)A1(a, γ) + ah(x)B1(a, γ) +

[
ρ̃1(x)

∂A1(a, γ)

∂γ
+ ah̃1(x)

∂B1(a, γ)

∂γ

](
ω − p

q
µ

)

= − ε

2π

∫ 2π

0
f1(a, x, ϕ) cos ϕdϕ

− εF0

2πl

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

cos θδ

(
θ

µ
− 2(i − 1)π

µ

)
cos

(
γ +

p

q
θ

)
dθ, (17)

− h(x)A1(a, γ) + aρ(x)B1(a, γ) +

[
h̃1(x)

∂A1(a, γ)

∂γ
− aρ̃1(x)

∂B1(a, γ)

∂γ

](
ω − p

q
µ

)

= − ε

2π

∫ 2π

0
f1(a, x, ϕ) sinϕdϕ

− εF0

2πl

∫ 2π

0

∑

s=1

sin
sπ

l
x0 sin

sπ

l
x
∑

i=1

cos θδ

(
θ

µ
− 2(i − 1)π

µ

)
sin

(
γ +

p

q
µ

)
dθ.

For the main resonance case, this system acquires the following form:

ρA1(a, γ) + ahB1(a, γ) +

[
ρ1

∂A1(a, γ)

∂γ
+ ah1

∂B1(a, γ)

∂γ

]
(ω − µ)

= − ε

2π

∫ 2π

0

∫ l

0
f1(a, x, ϕ) cosϕdϕdx+

εF0

πl2Ω
cos γ

∑

s=1

1

s
sin

sπ

x 0
l
∑

i=1

cos 2(i− 1)π − hA1(a, γ)

+ aρB1(a, γ) +

[
h1

∂A1(a, γ)

∂γ
− aρ1

∂B1(a, γ)

∂γ

]
(ω − µ) = − ε

2π

∫ 2π

0
f1(a, x, ϕ) sinϕdϕ

− εF0

πl2Ω
sin γ

∑

s=1

1

s
sin

sπx0

l

∑

i=1

cos 2(i− 1)π, (18)

where ρ =
∫ l

0 ρ(x) dx, h =
∫ l

0 h(x) dx, ρ1 =
∫ l

0 ρ̃(x) dx, h1 =
∫ l

0 h̃1(x) dx. The dependences obtained
allow investigating the dynamic process both directly in the resonance area and in the vicinity. From the
Poincare theory [6], it follows from the obtained first approximation equations that after some time,
the dynamic process approximates a certain steady process defined by the equations A1(a, γ) = 0,
ω− p

q
Ω+ εB1(a, γ) = 0 or the periodic process. In the former case, the frequency of self-oscillations of

the system characterized by steady longitudinal motion velocity is in a simple rational dependence with
the frequency of the forcing force and such dynamic process corresponds to synchronous oscillations
of the dynamic system. In the latter case, that is when the solution for the equations da

dt
= A1(a, γ),

dγ
dt

= ω − p
q
µ + εB1(a, γ) approximates the periodical one as time passes, the dynamic process will
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be made up by oscillations with self-frequency and oscillations with the frequency ∆ω = ω − p
q
µ.

Asynchronous oscillations of the system correspond to the latter case.
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Fig. 2. Flexible element oscillation amplitude changes at transition through resonance at different longitudinal
motion velocity and under conditions: (а) β = 100 s−2, (b) β = 0 s−2.

5. Numeric results and discussion

Note that the equations describing the laws of change of the amplitude-frequency characteristics of
the dynamic process of a system considering non-linear and periodic forces in the resonance case seem
bulky at first. However, at concrete force values they become greatly simplified. Figure 2 shows the
change of amplitude of the elastic moving element at transition through resonance under the condition
that the right side of the equation (2) acquires the form f(u, ux, ut, θ) = −k1ut + k2(ux)

2uxx + δ(x −
x0)F0

∑
i=1 δ(t − (i − 1)τ) at α = 25ms−1, l = 2m, x0 = 1m, F0 = 0.02, k1 = 0.01, k2 = 1,

τ = 2παl√
α2−V 2

√
π2(α2−V 2)+l2β

according to dependences (18). From graphical dependences of oscillations

amplitude resonance value change on longitudinal motion velocity and tension force, it follows that:
а) the amplitude resonance value at first increases, but then decreases as longitudinal motion

velocity increases;
b) the resonance transition amplitude acquires a lower value when periodic impulse excitation is

applied closer to the ends of the body.

6. Conclusions

1. Constant longitudinal motion velocity of a system affects the frequency of oscillations significantly
in case of a steady dynamic process, while in case of resonance it significantly affects the resonance
transition amplitude.
2. As velocity increases in a steady process, the frequency of system oscillations ω decreases according
to a law close to Ω = ω − γ

ω
V 2 (γ is constant, ω is the frequency of system oscillations without

longitudinal motion velocity).
3. The following features are characteristic for transition through resonance:
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— as longitudinal motion velocity increases, the resonance phenomenon is manifested at lower oscil-
lation frequency;

— for velocities approximate to critical (V = α), the amplitude resonance value is more dependent on
the impulse force and parameter α. At the same time, while α increases, the amplitude of transition
through resonance decreases.

4. At system motion velocities close to critical, the resonance amplitude is only affected by its value and
the magnitude of impulse excitation. At the same time, the impulse excitation effect is less manifested
than the initial amplitude value.

The correctness of the main results of the study is proved by the fact that in the boundary case,
we receive from them the results already known in literature.

The main ideas of the hybrid methodology developed in this study that combines asymptotic
approaches and the wave theory of motion can be generalized to expand the class of oscillating systems
whose mathematical models allow analytical research. In particular, it seems possible to use the results
obtained to research the effect of a system of impulse forces applied to different points of the body as
well as excited boundary conditions. Such generalizations will promote the development of sufficiently
accurate and useful from engineering practice point of view methods of synthesis and optimization of
parameters of corresponding technological equipment.
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Асипмтотичний метод та хвильова теорiя руху у дослiдженнi
впливу iмпульсних сил на системи, якi характеризуються

поздовжньою швидкiстю руху

Сокiл Б. I.1, Пукач П. Я.2, Сеник А. П.2, Сокiл М. Б.2, Андрухiв А. I.2, Вовк М. I.2

1Нацiональна академiя сухопутних вiйськ iменi гетьмана Петра Сагайдачного,

вул. Героїв Майдану, 32, Львiв, 79012, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Розроблено методику дослiдження динамiчних процесiв одновимiрних систем з роз-
подiленими параметрами, якi характеризуються поздовжньою складовою швидкостi
руху та вiдповiдно до параметрiв дiєю iмпульсних сил. Математична модель динамiки
розглядуваних систем у змiнних Ейлера є крайовою задачею для загального нелiнiй-
ного диференцiального рiвня Клейна–Гордона. Його особливiстю є те, що незбурений
аналог не дозволяє для побудови розв’язку використання вiдомих класичних методiв
Фур’є та Д’Аламбера. Додатковою проблемою є також нерегулярнiсть правої частини
для збуреного нелiнiйного аналогу. У роботi показано, що динамiчний процес вiдпо-
вiдного незбуреного руху можна трактувати як накладання прямої та вiдбитої хвиль
рiзних довжин, проте однакових частот. Отримано аналiтичнi вирази для опису вка-
заних параметрiв хвиль. Вони показують, що динамiчний процес у таких механiчних
системах залежить не тiльки вiд основних фiзико-механiчних параметрiв та крайових
умов, але й вiд вiдносної кiлькостi руху. При цьому iз збiльшенням вiдносної кiлькостi
руху частота процесу спадає.
Для опису збуреного руху використовується принцип одночастотностi коливань у
нелiнiйних системах iз iзосередженими масами та розподiленими параметрами, ме-
тод регуляризацiї за допомогою iмпульсних збурень. Узагальнено основної iдеї методу
асимптотичного iнтегрування системи iз малою нелiнiйнiстю на розглядуваний клас
динамiчних систем. Отримано рiвняння у стандартному виглядi для резонансного та
нерезонансного випадкiв. Встановлено, що для першого наближення в нерезонансно-
му випадку iмпульсне збурення формує лише часткову змiну вiдносної кiлькостi руху.
Резонанснi процеси можливi при певних зв’язках мiж перiодом iмпульсного збурення,
швидкiстю руху середовища та фiзико-механiчними властивостями тiла. Амплiтуда
переходу через резонанс приймає бiльше значення у випадку, коли точка прикладан-
ня iмпульсних дiй знаходиться ближче до середини тiла. Iз зростанням швидкостi
поздовжнього руху вона досягає максимуму, а потiм спадає.

Ключовi слова: поздовжньо рухомi системи, iмпульсне збурення, асимптотич-

ний розв’язок, хвильове число, амплiтуда, частота, резонансне явище.

Mathematical Modeling and Computing, Vol. 9, No. 4, pp. 909–920 (2022)


